

$$\tau^{\pm} \longrightarrow \pi^{\pm}\pi^{+}\pi^{-}\pi^{0}\nu$$

Roger Barlow

Durham Meeting: April 2005

Talk does not contain

Selection details - 14 cuts, tag by lepton or π or ρ

 π/K separation

Detailed Monte Carlo comparisons

Normalisation

Background subtraction

All the data

Collaboration approval

No obvious structure

Monte Carlo (red) simulation of hadronic τ decays far from perfect agreement with data (black)

With
$$\tau^{+} \to \pi^{+}\pi^{+}\pi^{-}\pi^{0}$$
 (+C.C.):

Three charge states:

Neutral: $\pi^+\pi^-\pi^0$ (times 2) Large ω peak

Charge one: $\pi^+\pi^+\pi^-$

Charge two: $\pi^+\pi^+\pi^0$

Charge one state (red)

mass lower than charge two state (green).

Durham Meeting. April 2005: Slide 4

(3 pi)+ mass

$M(3\pi)$ correlations

Mass plot of two neutral combinations

Strong structure. Much is $\omega\pi$ and much isn't.

Nothing obvious in other $M(3\pi)$ and $M(4\pi)$ correlation plots

Indications that peak is less than the sum of its parts.

Destructive interference?

Study of $\omega\pi$ events

In progress. Straightforward. Dalitz plot behaviour and angular distributions of lone pion as expected and as seen in previous experiments.

Remove ω events

 ω produced at low $M(4\pi)$ values

Is this dynamics or kinematics?

Remove ω events (contd)

No great effect on other 3π mass distributions

Difference between plus-one and plus-two masses persists

$M(2\pi)$ distributions

Total and with ω removed $\pi^-\pi^0$ has very strong ρ $\pi^+\pi^0$ has some ρ $\pi^+\pi^-$ has a little ρ

Conclusion: questions

Very high statistics coming... with πK separation.

What else can be plotted?

What can be learnt?