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Probability Revisited
I say:
“The probability of rain tomorrow is 70%”
I mean:
I regard  'rain tomorrow' and 'drawing a white 

ball from an urn containing 7 white balls 
and 3 black balls' as equally likely.

By which I mean:
If I were offered a choice of betting on one or 

the other, I would be indifferent. 
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This is Subjective (Bayesian) 
probability

GOOD
I can talk about – and do 

calculations on – the 
probability of anything:

• Tomorrow's weather 
• The Big Bang
• The Higgs mass
• The existence of God
• The age of the current 

king of  France

BAD
There is no reason for my 

probability values to be 
the same as your 
probability values

I may use these 
probabilities for my own 
decisions, but there is no 
call for me to impose 
them on others
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Bayes' Theorem

P  B | A  P A=P A& B=P A | BP B

P A | B= P B | AP A
P B

Conventional application

“Bayesian” application

P disease | symptom= P symptom | diseaseP disease
P  symptom

P Theory | Data =P Data |TheoryP Theory 
P Data 
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Bayes at work
Dr. A Sceptic thinks that Global Warming is 

probably a myth.   P=10%
Data arrives showing loss of Antarctic ice 

coverage.    Global warming said this would 
definitely happen (P=1).  But it could 
happen as part of natural cyclical 
fluctuations (P=20%)

Use Bayes Theorem
PG '=

P melt |GPG

P melt |G PGP melt | G  PG
= 0.1

0.10.2x0.9
=0.36

All numbers 
totally fictitious
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Misinformation abounds...

http://yudkowsky.net/bayes/bayes.html
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Priors and Posteriors
Can regard the function P(M) as a set of 

different probabilities for theories about M 
(now a parameter of the model)

P M  '= P R | M P M 
P R Prior distribution 

for MPosterior distribution 
for M

2.302.30

Probability 
distribution for R 
given M  distribution for R 

anyway

General notation:
Model parameter(s) M
Experiment result(s) R
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Probability and The Likelihood 
Function

P(R|M) is the probability of what can be a a whole set of 
results R, as a function of the model parameter(s) M

Also known as the likelihood L(R,M)
It is always tempting to think of it as L(M,R): Probability 

for model parameter(s) M given result(s) R
For frequentists this is rubbish. For Bayesians it follows 

if the prior is uniform.
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'Inverse Probability'
Bayes theorem says:

    P(M|R) ∝ P(R|M)
Call this 'inverse probability'.  Probability distribution for 

a model parameter M given a result R. Just normalise
Seems easy.
But:
P(M) is meaningless/nonexistent in frequentist 

probability
Working with P(M) and P(M2) and P(ln M) will give 

different and incompatible answers
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Integrating the Likelihood 
function L(R,M)

For Bayesians:
Go ahead.
Be aware that if you 

reparametrise M then 
your results will change

  Unless you specify a prior 
and reparametrise that

 For Frequentists, 
integrating L wrt M is 
unthinkable. 

Integrating/summing over 
R is fine. Use it to get 
expectation values

If you integrate a likelihood then you're doing something 
Bayesian.  
If you are a Bayesian, this is not a problem.
If you claim to be a frequentist, you have crossed a borderline 
somewhere
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Uniform prior

• Often take P(M) as constant
 (“flat prior”)
• Strictly speaking P(M) should be 

normalised: ∫P(M) dM =1
• Over an infinite range this makes the 

constant zero...
• Never mind!  Call it an “Improper Prior” and 

normalise the posterior
• A prior flat in M is not flat in M' (ln M, M2, ..)



SLUO Statistics 
Lectures 2006

Bayesian Confidence Intervals Slide 12

Bayesian Confidence Intervals
Trivial!
• Given the posterior P'(M|R) you 

choose a range [M
lo
,M

hi
] for which

Choice of strategies: central, upper 
limit lower limit, etc.

Includes HPD (Highest Posterior 
Density) – gives shortest range

(but not invariant under changes of 
variable)

∫M lo

M hi P ' M | RdM =CL
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Examples: Gaussian

Gaussian 
Measurement

P R , M = 1
2

e−R−M 2/22

Taking P(M) and P(R) as flat, this is 
also the probability distribution for M

This can act as the prior for a 
second measurement. Gaussians 
multiply and give post-posterior 
Gaussian with expected mean and 
width

Confidence intervals for M are just 
like confidence intervals for R (1σ,2
σ, etc)
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Examples: Poisson

We can regard this as 
a posterior for M

(assuming uniform 
prior)

Shown for various 
small N results

Read off intervals...

P R , M =e−M M R

R!

R=6
R=2

R=1

R=0 P'(M)



SLUO Statistics 
Lectures 2006

Bayesian Confidence Intervals Slide 15

Upper and lower limits
Upper limit

Repeated integration by parts:

Same as frequentist limit  (coincidence!)
Lower Limit

Not (quite) the same: includes r=N term

∫0

xhi

e−x xN

N !
dx=1−

∑0

N
e−xlo

x lo
r

r !
=1−

∑0

N
e−xhi

xhi
r

r !
=
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Incorporating Constraints: 
Gaussian

• Say we know M>0
• Prior is now a step function.

X =

measurement posteriorprior

Normalise and read off properties
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Incorporating Constraints: 
Poisson

Work with total source strength (s+b) you 
know is greater than the background b

Need to solve

Formula not as obvious as it looks. 

=
∑0

n
e−sbsbr / r !

∑0

n
e−b br / r !
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Robustness

• Result depends on chosen prior
• More data reduces this dependence 
• Statistical good practice: try several priors 

and look at the variation in the result
• If this variation is small, result is robust 

under changes of prior and is believable
• If this variation is large, it's telling you the 

result is meaningless
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Example: Poisson with no events
90% Upper Limit?

Prior flat in λ

Prior flat in √λ

X

X
=

=
1.65

2.30
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Objective Priors

Introduced by Jeffreys
Transform to a variable M' for which the Fisher 

Information                  is constant

Equivalently: take prior proportional to √I
I is the curvature of the likelihood function at 

the peak. Describes how much a 
measurement will tell you. If it's not constant 
then some regions are 'better' than others.

I=−〈 d 2 ln L
d M ' 2 〉



Common Cases

•For a location parameter   L(R,M)=f(R-M)
  a uniform prior is objective

•For a scale parameter  L(R,M)=f(r x M) 
 the objective prior is 1/M, or equivalently work 
with M'= ln M and a uniform prior

•For a Poisson mean, the objective prior is 1/√M

When a physicist says 'a flat prior' they mean a 
uniform prior. When a statistician says 'a flat prior' 
they mean a Jeffreys' prior



Why didn't it catch on?
It is 'objective' in the sense that everyone can agree on 
it.  But they don't.

•It's more work than a uniform prior
•There are cases where it diverges and gives posterior 
functions that can't be normalised
•It does not work in more than one dimension (valiant 
attempts are being made to do this generalisation, 
under the name of Reference Priors)
•It depends on the form of L(R,M) which depends on 
the experiment.   If you have an initial degree-of-belief 
prior function for (say) the Higgs mass, that should not 
depend on the measurement technique 



SLUO Statistics 
Lectures 2006

Bayesian Confidence Intervals Slide 23

Are Systematics Bayesian?

• A systematic error is an uncertainty in an 
effect

• Sometimes this is well understood and 
determined experimentally – e.g. Energy 
calibration

• Often (more often?) they are estimates - 
“Theory Errors”

• These are intrinsically Bayesian. Can/must 
be treated as such
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Systematic Errors =Nuisance 
Parameters

Suppose the result of an experiment depends on a 
parameter of interest M and a 'nuisance parameter' N

P'(M,N|R) ∝ L(R|M,N) P
M
(M) P

N
(N)

We are interested in 
P'(M|R)=∫P'(M,N|R) dN ∝ P

M
(M) ∫ L(R|M,N)  P

N
(N) dN

This is called Marginalisation. Frequentists cannot do it 
as it involves integrating the Likelihood.  For 
Bayesians it's obvious. (Depends on prior P

N
(N))
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Application to Poisson
Cousins and Highland: Signal strength   λ=As+b
A is 'sensitivity', b is background.  Uncertainties on 

both values give systematic errors
Fully Bayesian treatment requires prior for source 

strength s.  Tricky
Partial Bayesian treatment uses Gaussians for b 

and A and marginalises (integrates)
Prior dependence for A – 10% uncertainty in A 

gives limits ~1% different for different priors
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Example – CKM fitter
Le Diberder, T'Jampens and others

Sad Story
Fitting CKM angle α from B→ρρ
6 observables
3 amplitudes: 6 unknown parameters (magnitudes, 

phases)
 α is the fundamentally interesting one
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Results
Frequentist

Bayesian
Set one phase to zero
Uniform priors in other 
two phases and 3 
magnitudes
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More Results
Bayesian
Parametrise Tree and Penguin 
amplitudes 
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Bayesian
3 Amplitudes:
  3 real parts, 3 Imaginary parts
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Interpretation
● B→ππ shows same 

(mis)behaviour
● Removing all experimental 

info gives similar P(α)
● The curse of high 

dimensions is at work

Uniformity in x,y,z makes
  P(r) peak at large r
This result is not robust 

under changes of prior
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Conclusions
Bayesian Statistics are
• Illuminating
• Occasionally the only tool to use
• Not the answer to everything
• To be used with care 
• Based on shaky foundations ('house built on sand')
•  Results depend on choice of prior/choice of 

variable
Always check for robustness by trying a few different 

priors. Serious statisticians do. 


