

Significance: Does $\Delta \chi^2$ give σ^2 ?

Roger Barlow Montreal Collaboration meeting June 2006

How it started

Analysis looking for bumps Pure background gives χ^2_{old} of 60 for 37 dof (Prob 1%). Not good but not totally impossible Fit to background+bump (4 new parameters) gives better χ^2_{new} of 28 Question:

Is this improvement significant? Answer:

Significance is $\sqrt{(\chi^2_{new} - \chi^2_{old})}$ other resonance, real or fictitious = √(60-28)=5.65 Puzzle. How does a 3 sigma discrepancy become a 5 sigma discovery?

Schematic only!!

No reference to any

Justification?

- 'We always do it this way'
- 'Belle does it this way'
- 'CLEO does it this way'

Possible Justification

Likelihood Ratio Test
a.k.a. Maximum Likelihood Ratio Test
If M₁ and M₂ are models with max. likelihoods L₁ and L₂ for the data, then 2ln(L₂ / L₁) is distributed as a χ² with N₁ - N₂ degrees of freedom
Provided that
1. M₂ contains M₁
✓
2. Ns are large

X

- 3. Errors are Gaussian
- 4. Models are linear

4

Does it matter?

- Investigate with toy MC
- Generate with Uniform distribution in 100 bins, <events/bin>=100. 100 is large and Poisson is reasonably Gaussian
- Fit with
 - Uniform distribution (99 dof)
 - Linear distribution (98 dof)
 - Cubic (96 dof)
 - Flat+Gaussian (96 dof)

Cubic is linear(!) $a_0 + a_1 x + a_2 x^2 + a_3 x^3$ Gaussian is not linear in μ and σ

One 'experiment'

6

Calculate χ² probabilities of models on their own

From the χ^2 and N_{dof} for the 4 models. Not bad. Show Gaussian approximation is working fairly well.

Ideal would be flat for all

Calculate χ^2 probabilities of differences in models

Not all parameters are equally useful

Shows χ² for flat+gauss v. cubic

Same number of parameters

Flat+gauss tends to be lower

If 2 models have the same number of parameters and both contain the true model, one can give better results than the other. This tells us nothing about the data

Helpful (?) way of thinking

- Method <u>is</u> valid if you fix Gaussian position and width and just vary size (1 dof – and linear). OK for investigating a known peak
- Intuitively sensible for small σ: you fit the known bin exactly. Contribution (≈1) to χ² is zapped.
- If you keep σ small and float μ this gives your fit the power to zap the bin with highest χ^{2} . That is larger, tricky to calculate, and depends on the number of bins. Result not guaranteed to be χ^{2}

Conclusion: Does $\Delta \chi^2$ give σ^2 ?

No