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Abstract

The effect of a leading particle on a trailing particle due
to resistive and geometric wakefields in collimators can be
described by expanding in a series of angular mode po-
tentials Wm(s). Several formulae for these are given in
the literature. We compare these formulae with numerical
predictions from codes that solve the EM field equations.
We also show how the EM code results can be used to nu-
merically obtain angular mode potentials suitable for use in
tracking codes.

WAKE FIELDS IN COLLIMATORS

In the collimation system of the ILC the beams pass very
close to the collimator edges, which may lead to significant
wakefield effects. Collimators, unlike cavities, are not basi-
cally resonant structures, so the behaviour is not dominated
by resonant modes. Long range inter-bunch wakefields are
therefore unimportant, whereas short range intra-bunch ef-
fects can be significant. Because parts of the beam are near
the edge of the conductor, high order angular modes can
become important. Effects from transverse wakefields are
believed to be more important than longitudinal ones. The
study of these effects continues[1, 2].

BUNCH WAKES AND DELTA WAKES

A particle going through an aperture induces charges
and currents which produce electromagnetic fields (wake
fields) that act on later particles. The simulation programs
need to know the effect that a leading particle with some
transverse co-ordinate ~r ′ has on some particle with trans-
verse co-ordinate ~r trailing by some distance s. For axially
symmetric apertures the transverse dependence is taken
care of by a sum over modes m = 0, 1, 2.. leaving the wake
functions Wm(s). These functions for individual particles
are termed the delta wakes.

The effect on the trailing particle comes not only from
this particular leading particle but from all particles in the
bunch which are ahead of it. This aggregated wake func-
tions are termed the bunch wakes.

Bunch wakes can be determined from delta wakes by
summation or integration. The question addressed here is
how to obtain knowledge of the delta wakes from the bunch
wakes.
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This is important because delta wakes (geometric and
resistive) have been calculated only in some particular
cases for particular apertures. There are programs such
as GdfidL, MAFIA, and ECHO which solve Maxwell’s
equations on a grid for arbitrary aperture shapes and com-
pute the bunch wake fields, assuming a Gaussian bunch of
some specified size σ. But for particle simulation codes
such as Merlin[3] needed to track the behaviour of the non-
Gaussian bunch shapes that will be produced, the delta
wake functions are needed.

As an example we consider a tapered collimator in which
the beampipe of radius 19 mm tapers down to 2 mm over a
distance of 5 cm, and then back out again.

The simple and widely used delta wake formula[4] for a
beam pipe of radius a tapering in to an aperture of radius b

Wm
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Figure 1: Transverseδ wakes suggested by Raimondi et al

and shown in the figure was justified on the grounds that it
gives bunch wakes which agree with simulations from the
MAFIA program. This agreement is clearly a necessary but
not a sufficient condition, as there are various functions that
could give similar acceptable agreement. We need to find a
clear way of getting from the bunch to the delta wakes.

ECHO SIMULATIONS
This is provided through deconvolution. The bunch

wake Wb(s) is a convolution of the delta wake Wδ(s) and
the Gaussian beam profile, G(s; σ)

We determined the bunch wakes for this aperture with
the ECHO2D program [5]. A bunch of σ = 0.05 mm was
used, with a z step of 0.005 mm.
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Figure 2: Bunch wakes from ECHO2D

To extract the delta wakes from the bunch wakes shown
in Figure 2 we take the Fourier transform, divide by the
Fourier Coefficients of a Gaussian with σ = 0.05, and
transform back. The result - the top left plot in Figure 3
- is unphysical as it has large high frequency components.
(It is not wrong: it gives the correct bunch wake when re-
combined with a Gaussian.) The problem is that at high fre-
quencies small coefficients of the bunch wake are divided
by very small coefficients of the Gaussian, and small fluc-
tuations in the denominator have massive effects.

This problem can be removed by a simple inverse filter.
If the magnitude of the Gaussian coefficient ck is smaller
than some tuning constant 1/γ the multiplication of the am-
plitude is capped at γ. The effects of different γ values are
shown in Figure 3. We choose to work with γ = 10
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Figure 3: Reconstructed W 1
δ with different damping

With this choice we reconstruct the δ wakes. Figure 4
corresponds to the bunch wakes in Figure 2.

There are clearly similarities to the proposed wakes of
Figure 1 but also differences. The wakes become narrower
and larger as the mode increases. However there are also
differences: the reconstructed wakes show more structure
(including crossing the axis to become positive) than ex-
pected.

Probing the same aperture with Gaussian pulses of dif-
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Figure 4: Reconstructed δ wakes with γ = 10

ferent σ gives different bunch wakes, yet when deconvo-
luted (with the appropriate σ) the results are compatible.

Nevertheless there is structure at large s values which is
clearly non-physical. It must arise because the function is
periodic: it has a large step at s = 0 which is not easy for
a Fourier transform to accommodate and the effects wrap
around back through the origin. Given that this structure is
clearly wrong raises a question about how much the other
structure can be trusted.

The wake function must be zero for negative s. This
is a basic causality requirement[6]: particles are only af-
fected through wake fields of earlier particles. We must
have Wδ(s) = 0 for all s < 0. We therefore investigate
how to include this knowledge into the Fourier deconvolu-
tion process.

USING THE CAUSAL NATURE
Suppose a region is mapped into −π, π and a grid of

2N + 1 points set up, r = −N, ...0, ...N , with x = rπ/N .
We are interested in functions for which f(xr) = fr =
0∀(r < 0). We call these ‘causal functions’.

The Fourier expansion may be written

fr = b0 +
∑

k

ak sin (krπ/N) +
∑

k

bk cos (krπ/N) (2)

For any negative r we require fr = 0 which means that
the total contribution from the ai must be equal and op-
posite to the contribution from the bi, cancelling exactly.
At the equivalent positive r the cosine terms are the same,
whereas the sine terms all change sign. Therefore for r in
the range 1 to N a causal function must have

Sa = b0 + Cb (3)

where Sjk = sin (kjπ/N) etc and b0 is a vector of length
N with all components equal to b0. This is a relationship
between the coefficients which must be satisfied for any
causal signal.

The matrix S is square and symmetric and orthogonal.
The off-diagonal members of S2 are all zero: the diago-
nal ones are all N

2 except for the final bottom right one,



which is zero. However the coefficient aN is meaningless
as it multiplies sin (Nrπ/N) which is zero for all points r.
Hence we are justified in writing

a =
2
N

(Sb0 + SCb) (4)

The point f−N , which maps onto the point fN , does
not depend on the ak, as all sin (kNπ/N) are zero. The
cosines alternate between +1 and −1. Therefore to ensure
this point is zero one must have

b0 = b1 − b2 + b3 − b4... (5)

So we have a procedure for working with Fourier trans-
forms of causal signals. The cosine coefficients bj(j =
1....N) can be freely chosen or determined. The above
equations 4 and 5 are then used to give the constant term b0

and the sine coefficients aj , and this uniquely guarantees
that the function is zero for all negative r.

APPLICATION TO CONVOLUTION
If the (causal) signal with coefficients aj , bj , is convo-

luted with a smearing function (a Gaussian of known width
σ) with coefficients αj , βj , then the bunch wake is

fr = b0β0+
∑

k

(akβk+αkbk)Srk+
∑

k

(bkβk−akαk)Crk

(6)
Using the above expressions for b0 and a, this can be

written f = Qb where

Qrj = (−1)jβ0 + Srjαj + Crjβj + (7)
2
N

∑

k

(Skrβk − Ckrαk)

(∑

`

Sk`C`j + (−1)j
∑

`

Sk`

)

To determine the parameters by fitting the data dr we
adjust the coefficients such that χ2 =

∑N
r=−N (dr−fr)2 is

minimised. This strategy is justified not only on grounds of
convenience but as follows: we have N free parameters but
more than N data values, so we will not get an exact fit. A
general Fourier transform fits the fr to the dr perfectly, but
if you curtail the series at some wavenumber kmax < N ,
which you may well do for convenience, the coefficients
are actually those for which χ2 is minimised.

Minimising χ2 = (d−Qb)2 leads to the equation

Q̃d = Q̃Qb (8)

which can be solved to give the coefficients bj , and the co-
efficients b0 and aj then obtained. The desired causal delta
wake is also writable in matrix form as w = Mb, where
M is readily obtained from Equations 2, 4 and 5.

If this method also gives unphysical high frequency com-
ponents (and it seems to do so, though not as badly as the

direct method) then this can be easily and naturally dealt
with by including a regularisation term of k = 2 Tikhonov
form[7]. A matrix T is introduced which produces the
numerical second derivatives, and the quantity to be min-
imised is χ2 + λb̃M̃T̃TMb. λ is adjustable: positive λ
increases the smoothness at the expense of a (small) in-
crease in χ2. Values around λ = 10−4 seem to give good
results.
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Figure 5: Reconstructed causal W 1
δ

Figure 5 shows the result. There are still some artefacts -
the range had to be restricted for reasons of speed. But the
main and medium-size features of the delta wake persist
from that of Figure 4.

CONCLUSIONS
The deconvolution method looks to provide a way of ex-

tracting delta wakes from bunch wakes. Further tuning of
the method is required, but already we can see that simple
formulae, though they may be useful approximations, do
not describe the full structure.

Not only can this method be used to validate formulae,
the data values can be written to tables which will be used
as desired in the simulation packages.
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