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Resistive Wakefields

Longitudinal m = 0 wakefield

- Long Range approximation (Chao)

- Short Range approximation (Bane and Sands)
- Full treatment

Longitudinal m > 0 wakefields

Transverse wakefields

AC conductivity

Implementation
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Scenario

Uniform circular pipe of radius b, conductivity o
Interested in short range intrabunch fields

Assume thick pipe

Solve Maxwell’s equations in vacuum and in metal pipe.
Decompose into angular modes (cos(mé),m = 0,1,2...)

Match boundary conditions.

Work in frequency space as differentiation — multiplication
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The longitudinal wake for m=0

where

Introduce sg, the scaling length ( 20p for 1 cm Copper)
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The simplest case: Chao's formula

.= 2qk
In the long range (etc) limit £, = —%

l\DIOD

The Fourier Transform is well known to be E.(s) = 5L ./<s™~

We do it the hard way by numerical integration of:

E.(s) = SOW I (Re feven (K)] cos(Ks") + Im|foaa(K)] sin(Ks’))dK

feven(K) = 3 [F() + F(~K)|= - &VE

foaa(K) = %[f(K) - f(—K)}: 15 VE
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A problem and its solution

T e—
W s

v K sinKx oscillations increase. Numerical integration fooo dK hopeless

Solution:
First integrate analytically wrt x. Function becomes —cos(Kx)vV K /K

Integrate numerically wrt K
Differentiate numerically wrt x
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Long range wake
Ez
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Actually has our results and the Chao formula superimposed.
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A more accurate formula: Bane and Sands

o 2q 1
L, = 3 -

>

Solution well known to be

—s’ o0 $26_m28/
Ez(s) — izg (63 COS(\/§3’) — % fO 2678 dZC)

We have
2 2@(5—%)
2 5 —
feven(K):_b%( \/K>2 7fodd(K):_bi2( )2
Ei tx 3 tx
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Shows our results and Chao formula. Reproduces B&S

Wake is a function of three parameters (s, b and o), but use of sy enables
it to be written as a universal function f(s’), where E. (s,b) = 7 f(s/50).
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The full formula

Full version, with & = s2 /b

21e2VE+4vE
feven(K) — _% S He 2 -
4 {5\/?—% (§+2\/E) +K] + (5%52@%%)

2

2 {sx/ﬁ— + (§+2\/?) +K]

fodd(K) — 8bz2q

2

4 [5\/?— s (§+2¢E) +K] + (§2+§2\/E+4§>

Although this is no longer a universal curve, it can still be expressed as
a function of two variables (s’ and &) rather than the full set of three.
The B & S approximation corresponds to the function at & = 0.
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Figure shows how the function changes for different values of £.

For & below about 0.1 the approximation is very good.

ForEe% copper beam pipe with a radiys of 1 cm £ =~ 0.000004
, —£=0.1

g y

—_— E): 1
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Longitudinal: Higher order modes

For higher modes, using the same technique for m > 0

Em_ 4 1

z — p2m+I1
kb 2k | A
%+1_(T+E> (1"*‘2;\1))_%

The equivalent of B & S is E™ = bgnffH T
m-+1

PN
k

This can be separated into odd and even parts,

X ( K 1 )
_ 2 VE _ 2 mt+l VK
feven — T p2m+1 2 fodd — T p2m+1 2
mF1 I7e K m+1 VK K
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Results

10 -
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The full formula can be separated

21 e2VK +2YE
fe'ven(K) — _b2fr§—|—2 SHe K2
ovE L eravBre( K ep ) | +(erovRigE)

2

[ng £+2\/_)+2( Ko —¢ )]
[52\/_ +(€+2VK) +2(m+1 5%)] +(§2+§2\/_+2W)

fodd(K) = — pan
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Dependence on & for m = 1 and m = 5.

Dependence on ¢ increases for higher modes but still looks ignorable for
any sensible collimator.
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Is m=1 proportional to m=07

— m=0(=0.5)
— m=1(=0.5)

(m = 0 shown doubled)
This is true for & = 0 but not in general.
And not for other m. Shapes different (See slide 13)
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Transverse wakes

Transverse wake also a sum over angular modes

Er(r,0,s) = Z r™ L (fcos(mb) — Osin(m)) Wi (s)

The Panofsky-Wenzel theorem VE, = ang

applies term by term giving Wi (s) = [ E.(z)dx

Lucky we have that integral already evaluated!
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Evaluate transverse wake

Using b% factor. Chao’s formula also shown
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— ] =

Ez —m=2
2 — m=3
—m=4
— m=35

Transverse wakes - various modes with £€=0
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AC conductivity

o . o
1—tker 1—iKT

I' typically 1 at most. Usually much smaller.

Introduce into previous formulae - proceed as before
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The m = 0 wake for various I
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Implementation

Use Mathematica to integrate even and odd functions and generate table
of values as function of s, &, T

Only 3 variables - and 2 of them don’t vary (for a given collimator).
Write to file

C++ object collimatortable(file,Gamma,xi) - portable

reads complete table and interpolates to get single table for s’

double collimatortable::interpolate(double x) returns the value
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Implementation in MERLIN

Easy. Fits into existing structure introduced (see previous work) for
geometric wakes.

Class ResistivePotentials inherits from SpoilerWakePotentialsi
Reads a set of tables from files when created and contains functions

Wtrans(z,m) and Wlong(z,m) which each return a value from the tables
(using parabolic interpolation), scaled by appropriate factors.

Only handles circular apertures
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PLACET

Current version includes m = 1 transverse mode
Does include Anzsatz for rectangular collimators

Ytrailing — 0.822 X Ytrailing + 0.411 x Yleading

Implemented using C++
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Examples

MERLIN used to evaluate resistive contributions to kick factors for ESA
test collimators

Shown to be (much) less than geometric wakes (and < measurement

errors)
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Future Work

Generate examples - CLIC and LHC

Make table (applies to ANY collimator) and program and documentation

available

Extend to rectangular apertures

Page 27




