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Resistive Wakefields

Longitudinal m = 0 wakefield
- Long Range approximation (Chao)
- Short Range approximation (Bane and Sands)
- Full treatment

Longitudinal m > 0 wakefields

Transverse wakefields

AC conductivity

Implementation
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Scenario

Uniform circular pipe of radius b, conductivity σ

Interested in short range intrabunch fields

Assume thick pipe

Solve Maxwell’s equations in vacuum and in metal pipe.

Decompose into angular modes (cos(mθ), m = 0, 1, 2...)

Match boundary conditions.

Work in frequency space as differentiation → multiplication
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The longitudinal wake for m=0

Ẽz(k) =
2q

b

1
ikb
2 −

(

λ
k

+ k
λ

) (

1 + i
2λb

)

where

λ(k) =

√

2πσ|k|
c

(i + sgn(k))

Introduce s0, the scaling length ( 20µ for 1 cm Copper)

s0 =
3

√

cb2

2πσ
K = s0k s′ =

s

s0
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The simplest case: Chao’s formula

In the long range (etc) limit Ẽz = − 2qk
λb

The Fourier Transform is well known to be Ez(s) = q
2πb

√

c
σ
s−

3
2

We do it the hard way by numerical integration of:

Ez(s) = 1
s0π

∫ ∞
0

(

Re[feven(K)] cos(Ks′) + Im[fodd(K)] sin(Ks′)
)

dK

feven(K) = 1
2

[

f(K) + f(−K)
]

= − q
b2

√
K

fodd(K) = 1
2

[

f(K) − f(−K)
]

= ı q
b2

√
K
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A problem and its solution

20 40 60 80 100

-10

-5

5

10

20 40 60 80 100

-0.4

-0.2

0.2

0.4

√
KsinKx oscillations increase. Numerical integration

∫ ∞
0

dK hopeless

Solution:
First integrate analytically wrt x. Function becomes −cos(Kx)

√
K/K

Integrate numerically wrt K
Differentiate numerically wrt x
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Long range wake
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Actually has our results and the Chao formula superimposed.
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A more accurate formula: Bane and Sands

Ẽz = 2q
b

1
ikb

2
−λ

k

Solution well known to be

Ez(s) = 4qc
πb2

(

e−s
′

3 cos(
√

3s′) −
√

2
π

∫ ∞
0

x2e−x
2

s
′

x6+8 dx
)

We have

feven(K) = − q
b2

2√
K

(

K

2
− 1√

K

)2

+ 1
K

, fodd(K) = − q
b2

2ı

(

K

2
− 1√

K

)

(

K

2
− 1√

K

)2

+ 1
K
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Shows our results and Chao formula. Reproduces B&S

Wake is a function of three parameters (s, b and σ), but use of s0 enables
it to be written as a universal function f(s′), where Ez(s, b) = q

b2 f(s/s0).
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The full formula

Full version, with ξ = s2
0/b

2

feven(K) = − 8q
b2

ξ2+ξ2
√

K+4
√

K

K

4
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)
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K+4
√
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K

)

2

fodd(K) = − 8ıq
b2

2

[

ξ
√
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(
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√
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4

[

ξ
√
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√
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√
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2

Although this is no longer a universal curve, it can still be expressed as
a function of two variables (s′ and ξ) rather than the full set of three.
The B & S approximation corresponds to the function at ξ = 0.
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Figure shows how the function changes for different values of ξ.

For ξ below about 0.1 the approximation is very good.

For a copper beam pipe with a radius of 1 cm ξ ≈ 0.000004
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Longitudinal: Higher order modes

For higher modes, using the same technique for m > 0

Ẽm
z = 4

b2m+1

1

ıkb

m+1
−

(

2k

λ
+ λ

k

)(

1+ ı

2λb

)

− ım

kb

The equivalent of B & S is Ẽm
z = 4

b2m+1

1
ıkb

m+1
−λ

k

This can be separated into odd and even parts,

feven = − 2
b2m+1

1√
K

(

K
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− 1√

K

)

2

+ 1
K

fodd = − 2ı
b2m+1

(

K

m+1
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K

)

(

K
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K

)

2

+ 1
K
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Results

2 4 6 8 10
s'

-25

-20

-15

-10

-5

5

10
Ez

m = 0

m = 4
m = 3
m = 2
m = 1

m = 5

Page 14



The full formula can be separated

feven(K) = − 8
b2m+2
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√
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√
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Dependence on ξ for m = 1 and m = 5.
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Dependence on ξ increases for higher modes but still looks ignorable for
any sensible collimator.
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Is m=1 proportional to m=0?

Often stated that W m=1 = 2
b2 Wm=0
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(m = 0 shown doubled)
This is true for ξ = 0 but not in general.
And not for other m. Shapes different (See slide 13)
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Transverse wakes

Transverse wake also a sum over angular modes

~ET (r, θ, s) =
∑

m

rm−1(r̂cos(mθ) − θ̂sin(mθ))W m
T (s)

The Panofsky-Wenzel theorem ∇Ez = ∂ ~ET

∂z

applies term by term giving W m
T (s) =

∫ s

0
Ez(x)dx

Lucky we have that integral already evaluated!

Page 18



Evaluate transverse wake

Using 2
b2 factor. Chao’s formula also shown

2 4 6 8 10

-2.0

-1.5

-1.0

-0.5

Page 19



2 4 6 8 10
s'

-6

-4

-2

2
Ez

Transverse wakes - various modes with ξ=0
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AC conductivity

σ̃ = σ
1−ikcτ

= σ
1−iKΓ

Γ typically 1 at most. Usually much smaller.

Introduce into previous formulae - proceed as before
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Γ = 3

Γ = 0

Γ = 4

Γ = 2
Γ = 1

Γ = 5

The m = 0 wake for various Γ
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Implementation

Use Mathematica to integrate even and odd functions and generate table
of values as function of s′, ξ, Γ

Only 3 variables - and 2 of them don’t vary (for a given collimator).

Write to file

C++ object collimatortable(file,Gamma,xi) - portable

reads complete table and interpolates to get single table for s′

double collimatortable::interpolate(double x) returns the value
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Implementation in MERLIN

Easy. Fits into existing structure introduced (see previous work) for
geometric wakes.

Class ResistivePotentials inherits from SpoilerWakePotentialsi

Reads a set of tables from files when created and contains functions
Wtrans(z,m) and Wlong(z,m) which each return a value from the tables
(using parabolic interpolation), scaled by appropriate factors.

Only handles circular apertures
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PLACET

Current version includes m = 1 transverse mode

Does include Anzsatz for rectangular collimators

ytrailing → 0.822 × ytrailing + 0.411 × yleading

Implemented using C++
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Examples

MERLIN used to evaluate resistive contributions to kick factors for ESA
test collimators

Shown to be (much) less than geometric wakes (and ≤ measurement
errors)

PLACET:

µ

µ

σ

ξ Γ
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Future Work

Generate examples - CLIC and LHC

Make table (applies to ANY collimator) and program and documentation
available

Extend to rectangular apertures
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