Computation of Resistive Wakefields

Roger Barlow and Adina Toader

Wakefield Interest Group Cockcroft Institute, July 24 2008

Contents

Longitudinal $m = 0$ wakefield

- Long Range approximation (Chao)
- Short Range approximation (Bane and Sands)
- Full treatment
- Longitudinal $m > 0$ wakefields
- Transverse wakefields

Implementation

Scenario

Uniform circular pipe of radius b, conductivity σ

Interested in short range intrabunch fields

Assume thick pipe

Solve Maxwell's equations in vacuum and in metal pipe.

Decompose into angular modes $(cos(m\theta), m = 0, 1, 2...)$

Match boundary conditions.

Work in frequency space as differentiation \rightarrow multiplication

The longitudinal wake for $m=0$

$$
\tilde{E}_z(k) = \frac{2q}{b} \frac{1}{\frac{ikb}{2} - (\frac{\lambda}{k} + \frac{k}{\lambda}) \left(1 + \frac{i}{2\lambda b}\right)}
$$

where

$$
\lambda(k) = \sqrt{\frac{2\pi\sigma|k|}{c}}(i + sgn(k))
$$

Introduce s_0 , the scaling length (20μ for 1 cm Copper)

$$
s_0 = \sqrt[3]{\frac{cb^2}{2\pi\sigma}} \qquad K = s_0 k \qquad s' = \frac{s}{s_0}
$$

The simplest case: Chao's formula

In the long range (etc) limit $\tilde{E}_z = -\frac{2qk}{\lambda b}$ λb

The Fourier Transform is well known to be $E_z(s) = \frac{q}{2\pi}$ $\frac{q}{2\pi b}\sqrt{\frac{c}{\sigma}}s^{-\frac{3}{2}}$

We do it the hard way by numerical integration of:

$$
E_z(s) = \frac{1}{s_0 \pi} \int_0^\infty \left(Re[f_{even}(K)] \cos(Ks') + Im[f_{odd}(K)] \sin(Ks') \right) dK
$$

$$
f_{even}(K) = \frac{1}{2} \left[f(K) + f(-K) \right] = -\frac{q}{b^2} \sqrt{K}
$$

$$
f_{odd}(K) = \frac{1}{2} \left[f(K) - f(-K) \right] = i \frac{q}{b^2} \sqrt{K}
$$

A problem and its solution

√ KsinKx oscillations increase. Numerical integration $\int_0^\infty dK$ hopeless

Solution:

First integrate analytically wrt x. Function becomes $-cos(Kx)$ √ K/K Integrate numerically wrt K Differentiate numerically wrt x

Long range wake

Actually has our results and the Chao formula superimposed.

A more accurate formula: Bane and Sands

$$
\tilde{E}_z = \frac{2q}{b} \frac{1}{\frac{ikb}{2} - \frac{\lambda}{k}}
$$

Solution well known to be

$$
E_z(s) = \frac{4qc}{\pi b^2} \left(\frac{e^{-s'}}{3} \cos(\sqrt{3}s') - \frac{\sqrt{2}}{\pi} \int_0^\infty \frac{x^2 e^{-x^2 s'}}{x^6 + 8} dx \right)
$$

We have

$$
f_{even}(K) = -\frac{q}{b^2} \frac{\frac{2}{\sqrt{K}}}{\left(\frac{K}{2} - \frac{1}{\sqrt{K}}\right)^2 + \frac{1}{K}}, f_{odd}(K) = -\frac{q}{b^2} \frac{2i\left(\frac{K}{2} - \frac{1}{\sqrt{K}}\right)}{\left(\frac{K}{2} - \frac{1}{\sqrt{K}}\right)^2 + \frac{1}{K}}
$$

Shows our results and Chao formula. Reproduces B&S

Wake is a function of three parameters $(s, b \text{ and } \sigma)$, but use of s_0 enables it to be written as a universal function $f(s')$, where $E_z(s,b) = \frac{q}{b^2}$ $\frac{q}{b^2}f(s/s_0).$

The full formula

Full version, with $\xi = s_0^2$ $\frac{2}{0}/b^2$

$$
f_{even}(K) = -\frac{8q}{b^2} \frac{\xi^2 + \xi^2 \sqrt{K} + 4\frac{\sqrt{K}}{K}}{4\left[\xi\sqrt{K} - \frac{1}{K}\left(\xi + 2\sqrt{K}\right) + K\right]^2 + \left(\xi^2 + \xi^2 \sqrt{K} + 4\frac{\sqrt{K}}{K}\right)^2}
$$

$$
f_{n+1}(K) = -8iq
$$

$$
2\left[\xi\sqrt{K} - \frac{1}{K}\left(\xi + 2\sqrt{K}\right) + K\right]
$$

$$
f_{odd}(K) = -\frac{8iq}{b^2} \frac{L}{4\left[\xi\sqrt{K} - \frac{1}{K}\left(\xi + 2\sqrt{K}\right) + K\right]^2 + \left(\xi^2 + \xi^2\sqrt{K} + 4\frac{\sqrt{K}}{K}\right)^2}
$$

Although this is no longer a universal curve, it can still be expressed as a function of two variables (s' and ξ) rather than the full set of three. The B & S approximation corresponds to the function at $\xi = 0$.

Figure shows how the function changes for different values of ξ .

For ξ below about 0.1 the approximation is very good.

For a copper beam pipe with a radius of 1 cm $\xi \approx 0.000004$

Longitudinal: Higher order modes

For higher modes, using the same technique for $m > 0$

$$
\tilde{E}_z^m = \frac{4}{b^{2m+1}} \frac{1}{\frac{ikb}{m+1} - \left(\frac{2k}{\lambda} + \frac{\lambda}{k}\right) \left(1 + \frac{i}{2\lambda b}\right) - \frac{im}{kb}}
$$

The equivalent of B & S is $\tilde{E}^m_z = \frac{4}{b^{2m}}$ b^{2m+1} $\frac{1}{\frac{ikb}{m+1}-\frac{\lambda}{k}}$

This can be separated into odd and even parts,

$$
f_{even} = -\frac{2}{b^{2m+1}} \frac{\frac{1}{\sqrt{K}}}{\left(\frac{K}{m+1} - \frac{1}{\sqrt{K}}\right)^2 + \frac{1}{K}} \quad f_{odd} = -\frac{2i}{b^{2m+1}} \frac{\left(\frac{K}{m+1} - \frac{1}{\sqrt{K}}\right)}{\left(\frac{K}{m+1} - \frac{1}{\sqrt{K}}\right)^2 + \frac{1}{K}}
$$

The full formula can be separated

$$
f_{even}(K) = -\frac{8}{b^{2m+2}} \frac{\xi^2 + \xi^2 \sqrt{K} + 2\frac{\sqrt{K}}{K}}{\left[\xi^2 \sqrt{K} - \frac{1}{K}(\xi + 2\sqrt{K}) + 2\left(\frac{K}{m+1} - \xi \frac{m}{K}\right)\right]^2 + \left(\xi^2 + \xi^2 \sqrt{K} + 2\frac{\sqrt{K}}{K}\right)^2}
$$

$$
f_{odd}(K) = -\frac{8i}{b^{2m+2}} \frac{\left[\xi^2 \sqrt{K} - \frac{1}{K}(\xi + 2\sqrt{K}) + 2\left(\frac{K}{m+1} - \xi \frac{m}{K}\right)\right]}{\left[\xi^2 \sqrt{K} - \frac{1}{K}(\xi + 2\sqrt{K}) + 2\left(\frac{K}{m+1} - \xi \frac{m}{K}\right)\right]^2 + \left(\xi^2 + \xi^2 \sqrt{K} + 2\frac{\sqrt{K}}{K}\right)^2}
$$

Page 15

 $\left(\frac{\overline{K}}{K}\right)^2$

Dependence on ξ for $m = 1$ and $m = 5$.

Dependence on ξ increases for higher modes but still looks ignorable for any sensible collimator.

Is $m=1$ proportional to $m=0$?

Transverse wakes

Transverse wake also a sum over angular modes

$$
\vec{E}_T(r,\theta,s) = \sum_m r^{m-1} (\hat{r}\cos(m\theta) - \hat{\theta}\sin(m\theta)) W_T^m(s)
$$

The Panofsky-Wenzel theorem $\nabla E_z = \frac{\partial \vec{E}_T}{\partial z}$ ∂z

applies term by term giving $W_T^m(s) = \int_0^s E_z(x) dx$

Lucky we have that integral already evaluated!

Evaluate transverse wake

Using $\frac{2}{b^2}$ factor. Chao's formula also shown

The approximation is good for any sensible pipe

The $m = 0$ transverse wake, doubled, and the $m = 1$ wake for $\xi = 0.5$

Implementation in MERLIN

Easy. Fits into existing structure introduced (see previous talks) for geometric wakes.

Class ResistivePotentials inherits from SpoilerWakePotentialsi

Reads a set of tables from files when created and contains functions Wtrans(z,m) and Wlong(z,m) which each return a value from the tables (using parabolic interpolation), scaled by appropriate factors.

Only handles circular apertures

PLACET

Quite hairy.

Includes only $m = 1$ transverse mode

Does include Anzsatz for rectangular collimators

 $y_{training} \rightarrow 0.822 \times y_{training} + 0.411 \times y_{leading}$

Examples

MERLIN used to evaluate resistive contributions to kick factors for ESA test collimators

Shown to be (much) less than geometric wakes (and \leq measurement errors)

Future Work

Fix some minus signs and factors of 2

Implement in PLACET

Write paper

Consider frequency-dependent conductivity

Think about rectangular apertures