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Why are Gaussians Normal?
The Central Limit Theorem:
If a random number is formed by convoluting N random 
numbers with means μ

i
 and variances σ

i
2 then

• The means add: μ=Σμ
i

• The variances add:  σ2 =Σσ
i
2 

• The distribution tends to a Gaussian for large N – 
whatever the distribution of the separate contributions
If an error is due to many causes, it will be Gaussian
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Don't be scared of the non 
Gaussian

Adding variances works even for non-Gaussian 
errors.
Even if one source is non Gaussian, it will be mixed 
up with others.
The only point that doesn't work is the ±σ = 68% etc.
But you can avoid invoking that till the end (be careful 
in the tail.)
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Combination of Errors

Challenge:
Average 2 measurements
+0.0094 ± 0.0112 ± 0.0214
-0.00736 ± 0.00266 ± 0.00305
and get
-0.00957± 0.00251± 0.00146
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Combination of Errors

• Does not assume Gaussian behaviour
• Does assume linear dependence

 f
2=∂ f

∂ x


2

 x
2∂ f

∂ y

2

 y
2

 f
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∂ x
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Best Combination

For any w one can form an estimate

With error

To minimise this (differentiate) use

x=w x11−w  x2

w=
2

2−12

1
22

2−212

2=w21
21−w22

22w 1−w12
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More algebra...

Suppose σ
2
=10σ

1
, ρ=0.5

And the error falls to (72/91) σ
1

x=
2

2−12

1
22

2−212

x1
1

2−12

1
22

2−212

x2

x=95
91
x1

−4
91
x2
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Graphically

AA

B

A
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Maximum Likelihood 

iv)  We can approximate 
 

v) Read off σ from ∆lnL=-½

1
2=−〈 d

2 ln L
dM 2 〉

C≡−d 2 ln L
dM 2 ∣M= M=−〈 d

2 ln L
dM 2 〉

Estimate a model parameter 
M by  maximising the 
likelihood  

In the large N limit 
i) This is unbiassed
ii) The error is given by

iii) ln L is a parabola
L=Lmax−

1
2
C M− M 2
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Neat way to find Confidence 
Intervals

Take ∆lnL= -½ for 68% CL(1σ)
∆lnL=-2 for 95.4% CL (2σ)
Or whatever you choose
2-sided or 1-sided

But what if isn't Gaussian/parabolic?
You can transform to some µ' for which it is.
Carry out above procedure. Translate back to µ 
These limits are what you get from the ∆lnL= -½ 
procedure anyway – so can omit intermediate step  
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A Poisson measurement
1. You detect 5 events.  Best 

value 5.  But what about the 
errors?

 
 Find points where log 

likelihood falls by ½.   

Gives upper error of 2.58, 
lower error of 1.92 
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Is it valid?

• Try and see with toy model 
(lifetime measurement) 
where we can do the 
Neyman construction

• For various numbers of 
measurements, N, 
normalised to unit lifetime

• There are some quite 
severe differences! 
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Conclusions on 
∆lnL=-½ 
• Is it valid?  No
• We can make our 

curve a parabola, 
but we can't make 
the actual 2nd 
derivative equal its 
expectation value

• Differences in 2nd 
significant figure

• Will people stop 
using it? No

• But be careful when 
doing comparisons

Further details in NIM 550 392 (2005) 
and PHYSTAT05 

Neyman (solid)

 ∆lnL=-½ (dashed)

Poisson 
count
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More dimensions
Suppose 2 uncorrelated 

parameters, a and b
For any fixed b, ∆lnL=-½ will 

give 68% CL region for a
And likewise, fixing a, for b
Confidence level for square is 

0.682=46%
Confidence level for ellipse 

(contour) is 39%
Jointly, ∆lnL=-½ gives 39% 

CL region
for 68% need ∆lnL=-1.15

a

b

L(a,b)

a

b

L(a,b)
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More dimensions, other limits
• Generalisation to 

correlated gaussians 
is straightforward

• Generalisation to 
more variables is 
straight forward. Need 
the larger ∆lnL

68% 95% 99%
1 0.5 1.92 3.32
2 1.15 3.00 4.60
3 1.77 3.91 5.65
etc

• Wilks' theorem
-2∆lnL=χ2

• Careful!  Given a 
multidimensional Gaussian, 
ln L =- χ2/2. But -2∆lnL obeys 
a χ2 distribution only in the 
large N limit...

Level is given by finding χ2  
such that P(χ2,N)=1-CL 



HCPSS Statistics 
Lectures 2010

Roger Barlow
 

Lecture 2
Slide 17

Small N non-Gaussian 
measurements

No longer 
ellipses/ellipsoids

Use ∆lnL to define 
confidence regions, 
mapping out contours

Probably not totally 
accurate, but universal

See Tim Gershon's talk for 
even more amazing 
contours
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To do it properly...
• Have dataset, Max L at 
• Take point M in parameter 

space. Is it in or out of the 
68% (or ...) contour?

• Find
clearly small T is 'good' 

• Generate many MC sets 
of R, using M, find    and 
corresponding T

MC
 

• How often is T
MC

>T
data

?

• If more than 68%, M is in 
the contour

We are ordering the 
points by their value 
of T (the Likelihood 
Ratio) – almost 
contours but not 
quite

T=ln L R | M −ln L R |M 

M= M

M
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Systematic Errors

Some persistent myths
Systematic Errors should be added linearly
[Young]
A reproducible inaccuracy introduced by 
faulty equipment, calibration, or technique 
[Bevington].
These errors are difficult to detect and 
cannot be analyzed statistically [Taylor]
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Systematic Errors: What are 
they?

"Systematic effects" is a general category which includes effects 
such as background, selection bias, scanning efficiency, energy 
resolution, angle resolution, variation of counter efficiency with 
beam position and energy, dead time, etc. The uncertainty in the 
estimation of such a systematic effect is called a "systematic 
error".

J Orear

Systematic Errors have nothing to do with 
mistakes..
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Systematic Errors: Examples
Measuring tracks in a magnetic field

P
T
=0.3 B R

Error on R gives statistical error on momentum
Error on B gives systematic error on momentum

Measuring photons in a calorimeter
E= αD +β

Error on D gives statistical error on energy
Errors on  α,β give systematic error on energy

Measuring a cross section by counting events 
 σ=N/(ηL)

Error on N gives statistical error on cross section
Errors on η,L give systematic error on cross section
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Systematic Errors: features

(1) Repetition does not improve them. (Not 
repeating this measurement, anyway)
(2) Different measurements are affected in 
the same way. Hence correlations in 
combination-of-errors
(3) They do not reveal themselves through 
bad χ2
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Systematics: Note 1- repetition
E.g. More hits on a track improves the measurement 
of curvature, but not the measurement of the 
magnetic field.

Many systematic effects are measured by ancillary 
experiments. More data in these can help. 

Sometimes the 'ancillary experiment' is a part of the 
main experiment... whether an uncertainty is 
'systematic' or 'random' may be debatable.
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Systematics: Note 2- Correlation
The matrices do it all:
E.g. Two photons measured: 

E1=D1
E 2=D2

V=D1 1  0
D2 1 0   

2 0 0 0
0 

2 0 0
0 0 1

2 0
0 0 0 2

2  D1 D2

1 1
 0
0 




2 D1
2

221
2 

2 D1D2
2


2 D1D2

2 
2 D2

2
222

2 
Similar approach when combining experimental 
results that share uncertainties 
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Systematics: Note 3- 
Concealment

If you have underestimated (or ignored) a systematic 
uncertainty then this does not show up in a bad χ2 or 
whatever.
This is a challenge. But there are other consistency 
checks. And there is hard work and common sense, 
asking colleagues, etc...
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Serious Systematics 
If there isn't some nice equation to differentiate...
Example: Complicated analysis (cuts, isolation, 
combinations...) depending on energies of jets. Jet 
energy scale not precisely established.
Procedure: repeat analysis 
at +σ and -σ
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Notes on Serious Systematics

1. Don't sweat the small stuff. Concentrate 
effort and computer time on the biggest 
one (or two) effects.
2. You don't have to use ±σ. You can take 
larger/smaller steps to evaluate the 
gradient. And more values (but see 1)
3. Do not fold in any (statistical) error on 
the check results.
4. Do not take an asymmetric error too 
seriously
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Systematics may be Bayesian

• A systematic error is an uncertainty in an 
effect

• Sometimes this is well understood and 
determined experimentally – e.g. Energy 
calibration

• Often (more often?) they are estimates - 
“Theory Errors”

• These are intrinsically Bayesian. Can/must 
be treated as such
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Theory Errors
Typical example – calculated background
Ask (politely) more than one theorist
Be prepared to translate from tolerances to standard 
deviations.

Common uncertainty – hadronisation model. Run analysis 
with two different programs. There are cases for
Averaging and taking half the difference as σ
Choosing one and taking the difference as σ
Averaging and taking the difference over √12 as σ- but only 
if these are two extremes
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Systematic Errors =Nuisance 
Parameters

Suppose the result of an experiment depends on a 
parameter of interest M and a 'nuisance parameter' N

P'(M,N|R) ∝ L(R|M,N) P
M
(M) P

N
(N)

We are interested in 
P'(M|R)=∫P'(M,N|R) dN ∝ P

M
(M) ∫ L(R|M,N)  P

N
(N) dN

This is called Marginalisation. Frequentists cannot do it 
as it involves integrating the Likelihood.  For 
Bayesians it's obvious. (Depends on prior P

N
(N))
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Poisson revisited
 Signal strength   µ=As+b
A is 'sensitivity', b is background.  Uncertainties on 

both values are systematic errors. Group them 
together as N (for nuisance)

4 approaches known. (Plus? This is under 
development. See Banff workshop 
proceedings...)
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Approach 1

Quote joint CL 
contours for N 
and s

• This is a non-
starter. Nobody 
cares about N. 
You're losing 
information about s. 
(N may be 
multidimensional)

s

N
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Approach 2

• Set N to central 
values to get quoted 
result for s. Then 
shift N up one 
sigma, repeat, and 
get (systematic) 
error on s

• No theoretical 
justification

• Grossly over-
estimates error on s

• Still in use in some 
backward areas
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Approach 3: Cousins & Highland

• Integrate out N to 
get L(s,r) 

• This can be done 
analytically or 
numerically

•  Study L(s,r) and 
use ∆lnL=-½ or 
equivalent  

This is a 
frequentist/Bayesian 
hybrid. Acceptable (?) 
if the effects are small 

 Prior dependence for A – 
10% uncertainty in A 
gives limits ~1% different 
for different priors
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Approach 4 

• Profile Likelihood
• Use
• Find maximum
• See how it falls off 

and use  ∆lnL=-½ or 
equivalent, 
maximising by 
adjusting N as you 
step through M   

Intuitively sensible
Studies show it 

has reasonable 
properties

Lr , s=Lr , s , N 
L

s

N
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Justification (?) for using profile 
likelihood technique

Suppose {s,N} can be replaced by {s,N'} such that
L(r,s,N)=L(r,s) L'(r,N')

There are cases where this obviously works (and  
where it obviously doesn't) but OK for simple peaks.

Assuming it does, the shape of L(r,s) can be found by 
fixing N' (at any value).

Can fix N' by taking the peak for given s, as L'(r,N') is 
independent of s and peak is always at the same N'

N'

ss

N
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Profile Likelihood
Provided by 
Minuit
Available in 
Roostats
Use it!
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Searching for 
Systematics

“As we know, there are known 
knowns; there are things we 
know we know. We also know 
there are known unknowns; that 
is to say we know there are 
some things we do not know. 
But there are also unknown 
unknowns -- the ones we don't 
know we don't know."

- Donald Rumsfeld
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Finding them

Think of everything -
Ask around – widely
Run consistency checks
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Consistency checks

Are mass peaks in the right place?
Is the result consistent for different runs?
Is the result consistent with different cuts?
Is an analysis of the Monte Carlo consistent 
with what you put in?
Etc etc
All well known and noncontroversial...
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What is consistent?

'Consistent within errors' is less impressive 
than it looks, as the two analyses share the 
same data.
Taking the difference in quadrature 
between the two results as a benchmark 
has a lot to recommend it.
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What next?

Run a consistency check.
Decide if the result is consistent.
If it is – tick the box and move on. Do NOT 
add it to the systematic error!
If it is not – find out why! Do NOT add it to 
the systematic error!  
 - well, only as a last resort.
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Point of confusion
Add these Do not add these

Uncertainty Resulting 
change

Jet energy scale 10%  1.2
Muon acceptance 2%  2.3
Lumi 5%  3.4
...

Check Change Verdict
Loose muons +0.5 OK
2010 data only +0.3 OK
Change E

cut
 + 1 GeV -1.1 OK
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Asymmetric Errors

Arise from 2 sources:
Statistical errors from asymmetric 
confidence intervals, typically non-parabolic 
ln likelihood plots
Systematic errors from serious systematic 
checks where the upward and downward 
shifts are different
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Standard Method

Combine the positive errors in quadrature
Combine the negative errors in quadrature

This is clearly wrong.
a−5
3b−12

4 =ab−13
5

a−2
1b−2

1c−2
1d−2

1=abcd −4
2
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Standard Method

Combine the positive errors in quadrature
Combine the negative errors in quadrature

This is clearly wrong.

• It violates the Central Limit Theorem

a−5
3b−12

4 =ab−13
5

a−2
1b−2

1c−2
1d−2

1=abcd −4
2
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Alternative

Given a value and asymmetric errors, use 
these 3 points on the log likelihood plot to 
draw a parabola-like curve.
Good results from
with
For details see  arXiv:physics/0406120

Recommendation: Avoid asymmetric Errors 
Replace               by    12.3 ± 3.1

ln L a =−1
2
x−x2

V
V=V 0V '  x−x

12.3−2.9
3.3
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Conclusion

Do not inflate your Systematic Errors. 
“Conservative” is not a valid reason.

Statistics is a Science, not a folk tradition. 
Respect it, and it will serve you well. 


