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Wik iz ) Fitting and Estimation

Data sample {x_,x ,x,,...} confronts theory — pdf P(x;a)

(a may be multidimensional)
Estimator a(x ,x,,x,.. ) is a process returning a value ggr a.

<
1 ] - - ® KQ
A 'good' estimator is S
. @Q @{\'
— Consistent Q.9
66\‘('\0
. S
— Unbiassed Q;\\c\@b&
: S0 S
— Invariant A
— Efficient &

Explanations follow. Introduce (again) the Likelihood
L(X,,x,X,,..;a) = P(x;a) P(x ;a) P(x,;a) ...

IDPASC Statistics Roger Barlow Slide 3/26
Lectures 2010



% __ First IDPASC school

Im_ﬂ;";"{? 13-19 December 2010 CO nsS | Ste N Cy

Ses=imbra - Portugal

Introduce the Expectation value
<f>=ﬂf... f(x1,x2,x3,...) L(x,,X,,X,,..a) dx dx_dx_,..

Integrating over the space of results but not over a.

It is the average you would get from a large number of
samples. Analogous to Quantum Mechanics.

Consistency requires: Lt =~ <a>=a

—

l.e. given more and more data, the estimator will tend to the
right answer

This is normally quite easy to establish
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Require <a>=a (even for finite sample sizes)
If a bias is known, it can be corrected for

Standard example: estimate mean and
variance of pdf from data sample

=2, =3 (- i)
This tends to underestimate V. Correct by
factor N/(N-1)
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Desirable to have a procedure which is
transparent to the form of a, i.e. need not

A2

worry about the difference between ¢ anda’

This is incompatible with unbiassedness.
The well known formula (previous slide) is
unbiassed for V but biassed for o
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Minimise <(&-a)*>

The spread of results of your estimator
about the true value

Remarkable fact: there is a limit on this

(Minimum Variance Bound, or Cramer-Rao
bound)
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Repeated Gaussian measurements

=53

. — _(xl_li)zlzo'z
ﬂf b, dx, dx = ) e
- (X _u)z e—(xl—/,l)Z/Z(T2
Variance  ([[ dx, dx,dx; )=
2
MVB 1= Z —Nln(U\/ TT), dInl_—N
2 2
d u o
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Centre of a top hat function: 72(max + min)
- /4
Y TANF)(N+2)
More efficient than the mean.

Several Gaussian measurements with
different o: weight each measurement by
(1/0)?. - normalised

But don't weight Poisson measurements by
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Estimate a by choosing the value which maximises
L(x1,x2,x3,..a). Or, for convenience, In L =2 In P(xl_,a)

Consistency Yes

Bias-free No

Invariance Yes

Efficiency Yes, in large N limit

This is a technique, but not the only one.

Use by algebra in simple cases or numerically in
tougher ones
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Adjust a to maximise
Ln L

If you have a form
for (dIn L/da) that
helps a lot.

Use MINUIT or ROOT or...., especially if a is
multidimensional
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Maximising: requires 2 d In P(x,a)/da =0
This leads to fractions with no nice solution

— unless P is exponential.
Given set of x, measured y.,predictions f(x )

subject to Gaussian smearing — Max
likelihood mean minimising , D (y—f(x;;a))

X = 5
O,

l

Classic example: straight line fit f(x)=mx+c

_XY=Xy =
m= x_2 — , C=y—mXx
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m—-’i? k=l The Normal Equations

If fis linear function of a ,a_,a,...a_
—f=f(x) ZZanj(xi)
Maximum Likelihood = Minimum ¥*
22<yi_zajgj(xi))gk(xi)zo
2 vigix)=2 a2 g(x
Solve for the coefﬂments a by mverting
matrix
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sy, Orthogonal Polynomials

Good trick: construct the g(x) functions so that the
matrix is diagonal

If fitting polynomial up to 5" power (say), can use
1.%x,%x°,x° x* x° or 1,x,2x%-1,4x3-3x,8x*-8x%+1,16x>-
20x°+5x, or whatever

Choose g =1
Choose g, =x-(2x)/N so that makes 2g_g.=0
And so on iteratively g (x)=x"+ 2c_g (X)

c _=-2x'g (x)/Zg” (x)

These polynomials are orthogonal over a specific
dataset
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Fitting histograms

Raw data {x1,x2,x3,...xN}
Often sorted into bins {n1,n2,n3,...nm}

Number of entries in bin is Poisson
=y (nl-—f()zc,-;a» 5 (ni—f({i,'a)) 5 (n,— f(x;,a))
g, f(x;;a) n;

Last form sometimes used as a definition for
x*, though really only an approximation

Fit function to histogram by minimising x°.
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1) Minimise naive x°. Computationally easy
as problem linear

2) Minimise full x°. Slower as problem
nonlinear due to terms in the denominator

3) Binned Maximum Likelihood. Write the
Poisson probability for each bin e f"i/n!
and maximise the sum of logs

4) Full maximum likelihood without binning
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Consumer test

Fit f<x>:ixe—af

Try (many times)
with10,000 events

All methods give same

results
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Histogram fitting (contd)

With small sample
(100 events)

Simple x°goes
bad due to bins
with zeros

Full ¥*not good as
Poisson Is not
Gaussian

Two ML methods
OK
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Goodness of fit

order 1.

Full treatment by
integrating multi-d
gaussian gives X°
distribution P(x*,N) Is a p value.

Mean indeed N. Shapes Often called * x’

O.

1

Each term is clearly of (y__f(x. .a))z
X = ’ A

[.P(x?;N)dx"

vary probability
If the fit is bad, x“is
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Large x* >> N, low p value means:
If you histogram the p

- The theory IS WIrong values from many cases
(e.g. kinematic fits) the

- The data are wrong distribution should be
flat.

- The errors are wrong This is obvious if you
think about it in the right

- You are unlucky way

Small ¥* << N, p value~1 means:
- The errors are wrong

- You are lucky

Exact x° = N means the errors have been
calculated from this test, and it says nothing
about goodness of fit
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N R ) Nice extra feature

If one (or more) of the parameters in the
function have been fitted to the data, this
improves the x> by an amount which
corresponds to 1 less data point

Hence ‘degrees of freedom’ N_=N-N_
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No test available, sorry
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fit!!!

Take a 'Toy Monte Carlo' which
simulates your data many times,
fit and find the likelihood.

Use this distribution to obtain a p
value for your likelihood

This is not in most books as it is
computationally inefficient. But
who cares these days?
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Wilks' Theorem

Often stated that AIn L = -2 x?

This strictly relates to changes in likelihood
caused by an extra term in model. Valid
for relative comparisons within families

E.g. Fit data to straight line. x* sort of OK

Fit using parabola. x* improves. If this
improvement is >>1 the parabola is doing
a better job. If only ~1 there is no reason

to use It
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Wilks' theorem lets you compare the merit of
adding a further term to your
parametrisation: yardstick for whether
improved likelihood is significant. Does not
report absolute merit as x* does

Caution! Not to be used for adding bumps at
arbitrary positions in the data.
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