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.
Astronomical

Discovery #1

Uranus

Discovered by Herschel in 1781

An amateur
astronomer — but
high technology
equipment

Found in a thorough survey of the sky
searching for comets.



Statistical Discovery

significance | pvalue

You find something weird: 1o 31.7%
— Single weird event 20 4.55%

| weirdish 30 2.70 10°3

— Several weirdish events 1o .

— Bump in mass 56 5.73 107

— Unexpected distribution 2 1.9710°

Very unlikely that SM processes would look like this.
You report p-value, (say 0.0027), the probability
that the SM could produce an effect as weird as this
— or equivalently as (in this case) a 3-sigma-effect.

Press will say “Probability that the SM could be trueis
only 0.27%” (or whatever)
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“Probability that the Standard

Model is true”
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P(Data | Theory)

P(Theory | Data) =
P(Data|Theory)P(Theory) + P(Data | notTheory)P(notTheory)

P(Theory)

P(Data | SM)

S =
L POMIData) = e\ SMYP(SM) + P(Data 1 X)P(X)

O
K% &$
P(SM) — probability that the SM is effectively true for this energy/environment
X = your favourite BSM theory. P(Data|SM) ~ pValue.
Presumably P(SM)=1, P(Data|X)~1

P(SM)

pValue
pValue + P(X)

P(SM | Data) =

P(X) is limited by /-P(SM) and there are many other BSM theories.
If P(SM)=99.9% then maybe P(X)=10-* and P(SM|Data)=27/28=96%

To knock a hole in the Standard Model,
need REALLY small p-value
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.
Astronomical

Discovery #2

Neptune
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Discovered at Berlin/Cambridge
in 1846 from predictions by
LeVerrier/Adams

Prediction based on
discrepancies in
Uranus’ orbit

Observed by Galileo (and others) but
not recognised for what it was



Evaluating the p Value

Option 1:

Simulate the SM processes using Monte Carlo and count how
many times this measure-of-weirdness is exceeded.

This is correct by construction (if you trust your MC). Not good
for probing low-probability tails, unless you do something
clever weighting events

Option 2:

For measure-of-weirdness use a statistic with well-established
mathematical properties, e.g. x? distribution
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Traps with x?

X2 assumes Gaussian errors:

15

Not true for histograms, if
bin contents are small

Figure shows results of toy .
MC simulating pValue )
distribution from x? of
histogram with ~40, 20, 2
and 4 events/bin

0 20 40 60 80 100

probability



x? and fitting

N data points, M fitted parameters, gives x? with
distribution N-M ‘Degrees of freedom’

Strictly speaking — only true if fitting is linear, and
errors do not depend on fitted parameters. Care!

Difference of two ¥? distributions is ¥?

If you add parameters the improvement in x? tells you
whether they are giving a significantly better fit
(through its pValue)

But ...
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Astronomical
Discovery #3

 Pluto

Discovered in January 23, 1930 January 29, 1930
1930 by Tombaugh
following
predictions by
Lowell based on
remaining Uranus
deviations

Discrepancies in
Uranus’ orbit now
removed since
better measurement
of Neptune’s mass

Since clear that Pluto not massive
enough to be a ‘planet’: the Kuiper
belt contains many such ‘dwarf
planets’
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Statistics tools: another use
for Maximum Likelihood

Used for parameter estimation & errors. Not for goodness-of-fit
Can be used for model comparison

For two nested models Py(x,;a,a,...a,) and P,(x; a,a,...a,.,),
twice the improvement in Ln L is given by a x? distribution
with m-n degrees of freedom.

* Hard to show, but reverse obvious as Prob o exp(-y*/2)
e Sometimes called Wilks” Theorem
e Sometime called Likelihood Ratio Test

 Subject to legal small print, e.g. samples must be large...



Example

Generate x in /-0.5, 0.5] according to
uniform distribution. P(x)=1

Try P(x;a)=1+ax

Find a using Max Likelihood and

improvement in Likelihood and p-
value from Prob(2 A ln L;1)

Plot shows p-value distribution for 100
and for 10 x values

0.5

0.0

0 20 40 60 80 100

probability
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Pitfalls with Ax?and Aln L

120

Data fitted by Background (green)
or Background+signal (Red)

100

Signal = N BW(M,M 1)

80

Adding Signal improves x2.
Difference between two ¥2 values
has a x2distribution.

60

40

Can say - M, [ fixed: Null hypothesis S
says improvement is X2 for 1 D.O.F.
Prob(Ax?;1) gives pValue °

Can’t say-M,, I free: Null hypothesis Mass
says improvement is x?for 3 D.O.F.
Prob(Ax?:3) gives pValue



Making it obvious

For illustration, suppose I is fixed and
small. Resonance just affects 1 bin.

120

If M, fixed then adjusting N lets you fix
the value in that bin. Its contribution to
X2 is washed out. Expected
improvement 1.

100

80

60

If M, free then adjusting N lets you fix
the worst bin in the plot. Expected
improvement large and hard to
calculate — depends on number of bins

40
|

20
L 2

Put like this it's obvious. Yet it ! r .
goes on. Be prepared to fight
your colleagues.
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Patterns of Particle

Discovery
U type
Electrons N type N"type
> Positron Bottom quark
rotons
Muons Gluon
Strangeness W, Z N~ type
W Top quark Tau
D P violation Neutral Currents
SJ

CP violation



Dangerous Dummy

Parameters

“Hypothesis testing when a nuisance parameter is present only
under the alternative” - R.B. Davies Biometrika 64 p247
(1977) and 74 p33 (1987)

If the alternative ‘improved’ model contains parameters which
are meaningless under the background-only null hypothesis
then the Ay? test (etc) does not work.

Model Background(x,a) and Background(x,a)+N Signal(x,a)
Does a contains parameters which do not affect Background ?






