Beam Dynamics with MAD - Part 5

Roger Barlow

Insertions

Accelerating particles is not an end in itself.

- Injection
- **•** Extraction
- · Interaction Regions
- **·** Synchrotron Radiation

and to do all this we need **bumps**

ogo

Extraction

Note: Extraction and Injection similar - in complex systems extraction from one ring may be injection into another.

Particles in stable orbit on turn *N*, deflected into some other path for turn $N + 1$.

Not easy - thanks to Liouville's theorem and Maxwell's equations.

Usually Fast Extraction: whole bunch is affected. There is also slow, multi-turn, extraction which removes a few particles at a time..

Technologies: kicker and septum magnets

Kicker magnet: dipole that can be switched on in time (typically ns) between bunches. Pulse itself also short $(ns \rightarrow \mu s)$. Low impedance (no iron - maybe ferrite), massive current (kA), fast switch (thyratron)

Septum magnet: Thin sheet of conductor, bearing current, so magnetic field different on both sides. (There are also electrostatic septa)

Extraction: Kicker followed by septum

Injection Regions

Same as extraction but backwards - up to a point.

Septum so that injected and 1st turn bunches have close paths

Kicker to put injection bunch onto 1st turn orbit, then vanish before next orbiting bunch.

Useful trick: charge exchange. Accelerate *H −* ions, pass through foil which strips to H^+

N.b. can only be played once.

 $\overline{\Omega}$

Filamentation **Get things wrong on injection and the** emittance increases (despite Liouville)

> Remember: Twiss parameters of the machine define an elliptical shape. Area (=emittance) is arbitrary.

Turn by turn, particles move round their ellipse, so shape of bunch is the same.

Injected bunch also has elliptical shape defined by *α, β, γ*. If this is the same ('matches') accelerator, all well.

If not then particles move round on their new ellipses - 'filaments'

. after several turns new shape is effectively larger ellipse. . . ogo Liouvillle conserved as area of twisty shape $=$ area of original ellipse - but

Interaction Regions

Colliding particles in contra-rotating beams.

May use 2 rings (LHC, BaBar, HERA...) or 1 ring with particles and antiparticles (LEP, Tevatron...)

Collision rate at interaction point (IP) is *σL*, where *L* is the Luminosity

$$
\mathcal{L} = \frac{N_b f N_1 N_2}{4 \pi \sigma_x^* \sigma_y^*}
$$

for N_b bunches at orbit frequency f , with N_1 and N_2 particles per bunch, on average, and rms spreads $\sigma^*_\mathsf{x}, \sigma^*_\mathsf{y}$. (* denotes quantities at the IP.) Units *cm−*² *s −*1 . Typical values 1030+

From Twiss properties, $\sigma = \sqrt{\beta \epsilon}$. So want ϵ and β to be as small as possible ('squeeze the beams')

Near the IP, β(s) = β* +
$$
\frac{s^2}{\beta^*}
$$
. The nearest quad may be far away.

\nSoger Barlow

\nReam Dynamics with MAD - Part 5

\n7/15

Synchrotron Radiation

- **1** Accelerated charges emit EM radiation
- 2 Acceleration refers to velocity, not speed.
- ³ Changing the direction of a particle is a change in its velocity
- ⁴ Hence particles in magnetic fields emit EM radiation

Process a problem for particle physics but useful for X ray (and other) diffraction.

Rate of emission $P = \frac{e^2 c}{6\pi\epsilon}$ 6*πϵ*⁰ 1 $\frac{1}{(m_0c^2)^4} \frac{E^4}{R^2}$ so most important for electrons. Quantum process. Often best to think of it in terms of photons.

4 Generations of Synchrotron light sources

- **4** As a by-product of bending magnets in other accelerators
- **2** From bending magnets in dedicated accelerators (SRS at Daresbury)
- ³ Wigglers and Undulators in straight sections (Diamond)
- ⁴ Free electron lasers (LCLS, Tesla,...)

 $\begin{aligned} \left\{ \begin{array}{c} \left(\begin{array}{c} 1 \end{array} \right) \left(\$.
- 그러나 다른 사이 이야.
- 이야. Beam Dynamics with MAD - Part 5 $8 / 15$

Wigglers and undulators

Succession of opposing dipole fields in a straight section

Wigglers: EM radiation from each bend separately Undulators: EM radiation from each bend coherently. Constructive interference at right match of angle, wavelength, and magnet spacing. Give narrower spectrum and angular spread than wigglers. Free Electron Laser (FEL): constructive interference between radiation from individual electrons. Needs low *ϵ* and high *β*

Vital tool for insertions: local orbit bumps

Aim: to shift the position (or direction) of the beam without disturbing the rest of the ring. Usually in the horizontal direction, but can be vertical **Examples**

- Painting on injection: move phase space of beam around.
- Align particles for wigglers/undulators
- Move intersecting beams from just-miss to full collision

Use: corrector magnets (a.k.a. kickers, but these are slow) spread out among all the others.

One magnet is not enough. It just excites betatron oscillations.

. Two magnets is possible. Positions must differ *π* in betatron phase and strengths in ratio $\frac{K_1}{K_2} = \sqrt{\frac{\beta_2}{\beta_1}}$ *β*1 . Called the 180*◦* bump and not very common, but varying K_1 means you can vary the mean displacement in x by any desired amount *x* Three of four magnet bumps are more flexible

The 180*◦* bump

Plot shows position in scaled space - to get real displacement multiply by factor $\sqrt{\epsilon \beta(s)}$,

To get real distance *s* (locally) multiply by *β*(*s*)

Top plot: no kick, just envelope

Middle plot: kick applied

kick applied *π* later = see Bottom plot: second equal

Where did all that come from? 2 stages

The transfer matrices

Suppose **^A** transports (*x x ′* \setminus from magnet $1 \rightarrow 3$ and \mathbf{B} from $2 \rightarrow 3$. The system is linear, so the effect at magnet 3 of the kicks K_1 and K_2 is **A** (0 *K*1 \setminus + **B** (0 *K*2 \setminus = $(A_{12}K_1 + B_{12}K_2)$ $A_{22}K_1 + B_{22}K_2$ $\tilde{\setminus}$ = (0 *−K*³ \setminus which you solve for K_2 and K_3 .

The link from matrices to phase

Matrix can be written in terms of Twiss parameters and phase difference Ψ

 $M_{1\rightarrow 2}$ = $\sqrt{ }$ \mathcal{L} $\sqrt{\frac{\beta_2}{\beta_1}}$ (cos Ψ + *α*₁ sin Ψ) $\sqrt{\beta_1 \beta_2}$ sin Ψ $\frac{1}{\sqrt{\beta_1\beta_2}}\left((\alpha_1-\alpha_2)\cos{\Psi}- (1+\alpha_1\alpha_2)\sin{\Psi})\right) \quad \sqrt{\frac{\beta_1}{\beta_2}}(\cos{\Psi}-\alpha_1\sin{\Psi})$ \. $\overline{1}$

In this scaled space, *β* is constant and *α* vanishes and this is just a

rotation. In real world full detail is included. The server were the second Roger Barlow Beam Dynamics with MAD - Part 5 13 / 13 / 15 13 / 15

Four-magnet bumps

Kicks of magnets 1 and 2 adjusted to give desired displacement *X* and direction *X ′* at specified point P: $M_{1\rightarrow P}$ $\begin{pmatrix} 0 \\ K \end{pmatrix}$ *K*¹ $\left(\begin{array}{c} 0 \\ K \end{array} \right)$ *K*² $) = \begin{pmatrix} x \\ y \end{pmatrix}$ *X′* \setminus

Kicks of magnets 3 and 4 found using reflection of **Mp***→***³** and **Mp***→***⁴**

Formulæ in Wille 3.16

Problem

Set up a transfer line of length to be assigned, consisting of 4 F0D0 pairs. Plot the beta functions.

Introduce a 3-magnet bump that will move the horizontal co-ordinate at the point halfway along the line by 1 cm horizontally from the centre, without disturbing the trajectory outside the 3 magnets. Use MATCH to select the kicks required.

What is the transverse momentum you obtain at this halfway point? You will find Werner Herr's *MAD-X primer* helpful for this problem.