
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Making your programs faster
What I learnt on a 3 day course at Daresbury...

Roger Barlow

Int. Inst. for Accelerator Applications
The University of Huddersfield

June 8, 2016

Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 1 / 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Contents

• Basics
• Vectorisation

SIMD Architectures
How to invoke vectorisation
How to exploit vectorisation: peel, remainder, and stride

• Latency
• Profiling VTUNE or Amplifier
• Concurrency

Cores and threads
OpenMP and MPI
How-to with OpenMP
How-to with MPI

Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 2 / 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Basics

Standing instruction (1). Don’t bother.
Who cares whether your program runs in 0.23 seconds instead of 3.2
seconds? Todays’s computers are fast!
99% of the time this is true. But suppose we are in the other 1%.....
Standing instruction (2). Common sense.
Many computations produce results that are never used (at some level).
Let’s assume that you’ve cut all those out.
Standing instruction (3). No I/O
Printing, plotting, or file read/writes inside a loop will really slow it down .

Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 3 / 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Reduce the number of machine code instructions

Code like
for (i=0;i<100; i++) {x[i]=sqrt(2)*y[i];}
evaluates

√
2 100 times. Better to write

float rt2=sqrt(2); for (i=0;i<100; i++) {x[i]=rt2*y[i];}
Unroll (small) loops:

for(i=0;i<3;i++){x[i]=y[i]+z[i];}
→ x[0]=y[0]+z[0]; x[1]=y[1]+z[1]; x[2]=y[2]+z[2];

Use registers efficiently;
x=y*z; a=b*c; u=v*x; → x=y*z; u=v*x; a=b*c;

Use inline functions.
Avoid unnecessary integer/float/double type conversions:

float diam=2*r; → float diam=2.0*r;

Standing instruction (4). The Compiler is good at this - probably better
than you are
Specify Optimisation level gcc -o prog.X -On prog.cc

where n =0,1,2,3 increases optimisation
May be risky! Check test cases, especially if using level 3
Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 4 / 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Vectorisation
Also known as SIMD - Single Instruction Multiple Data

Some processors have vector arithmetic units. These are registers that,
instead of the usual 8 bytes, contain 16 (SSE), 32 (AVX, AVX2), or even
64 bytes (AVX-512).
So they can handle 2,4 or even 8 doubles (or 4, 8 or even 16
floats/integers) at once. (And even more short integers)
(They appear in assembly listings with names starting x, y or z. There are
also special instructions that manipulate them efficiently.)

Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 5 / 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to invoke vector arithmetic

You don’t have to - the compiler does it automatically! (Option -no-vec
turns it off)
So for (i=0;i<16;i++) { p[i]=q[i]*r[i];} can be done in one go
Use -xprocessor to compile using special features, e.g. -xAVX
or -xHOST unless you are cross-compiling
How can you tell? -qopt-reportlevel level goes from 1 to 5
icc -c -qopt-report5 -qopt-annotate myprog.c

Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 6 / 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Tweaking Vectorisation(1)

Loops cannot be vectorised if the order of iteration matters:
for(i=0;i<100;i++) x[i]=3*x[i]; YES
for(i=1;i<100;i++) x[i]=3*x[i-1]; NO
for(i=0;i<100;i++) x[i]=3*y[i]; Unknown Looks OK, but what if x
and y arrays overlap? float* y=&x-1;

Can be ambiguous if this is inside a function and arrays passed as
arguments;
Use #pragma statements to tell the compiler it’s OK to vectorise.
#pragma noalias (x,y)

#pragma ivdep - assures there are no dependencies (may be subtle if
arrays and/or indices passed as function arguments)
#pragma simd - insists

Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 7 / 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Tweaking Vectorisation (2)

Vector operations work only for sets of numbers aligned on the relevant
boundary, and only on complete vectors
So if float p[10] starts at word address xA0001, a loop with AVX2
vectorisation will
i) deal with p[0],p[1], and p[2] (three instances). This is called the ’peel’
ii) deal with p[3] to p[6] in one vectorised instance iii) deal with p[7], p[8],
and p[9] (three instances) This is called the ‘tail’
So:
1) Choose array dimensions carefully. If necessary add dummies at the end
2) Force alignment on the correct vector boundary. Use aligned malloc

3) Tell the compiler the variables are aligned

Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 8 / 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Latency

Not all instructions are equal!
Register/register instruction typically one clock cycle
Memory access may take several cycles. Some (local) memory is faster.
Cache system maps blocks into fast local memory.
(1) Tune cache parameters
(2) Worry about the way your arrays map onto memory
Key performance indicator is the CPI - Cycles per instruction

Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 9 / 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Profiling
Don’t sweat the small stuff

Where in your code is the computer spending it’s time? (Hotspots)
Profile with Intel VTune/Amplifier

Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 10 / 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Cores and threads

Cores are hardware. A core is essentially an independent CPU. It has its
own registers and program counter. Machine code instructions are loaded,
decoded and acted on (using pipelining, so it’s complicated)
Typical i5 PC has 4 cores. Server like IIAA1 has 24. Xeon Phi has 60. If
you’re not using all the cores, you’re inefficient.
Threads are software. A typical program is one thread (do this, then do
this, then do this...) but with care can be split into more than one.
A computer will be running with lots of threads active. User(s) plus
system processes. Do top to see some of them, or ps -e

Any given core runs a particular thread. So only ncores of the active
threads are actually running. It will switch to another thread if (i) this
thread is waiting for something or (ii) the scheduler tells it to. Switching
takes time (to store thread registers and load new ones)
Hyperthreading is an exception. Cores with hyperthreading can switch
seamlessly between two threads. So an i7 CPU with 4 cores can have 8
threads running, but each is, on average, only using half the clock cycles.

Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 11 / 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

OpenMP and MPI
Two different systems with deceptively similar names -

MPI - Message Passing Interconnect is basically designed for distributed
systems doing their own thing but talking to each other

OpenMP - Open Multi-Processing is basically designed for shared-memory
systems. Executes the same block of code in several parallel threads.

Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 12 / 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

OpenMP

Very easy to use:
1) Include header file <omp.h>
2) Compile using -fopenmp flag
3) Use #pragma omp directives to fork process into threads
Each of the produced theads has a number accessible through
omp get thread num(). Thread 0 is the ‘master’ thread, others are
’slaves’.
#include <iostream>

#include <omp.h>

void main(){
using namespace std;

#pragma omp parallel

{int i=omp get thread num();

int n=omp get num threads();

cout<<"Hello World from " <<i<<" of "<<n<<endl;

} }

Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 13 / 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

What happens...

$ export OMP NUM THREADS=6

$./a.out

Hello World from Hello World from Hello World from 52 of 6

of 61 of 6Hello World from Hello World from

Hello World from 3

4 of 6

0 of 6

of 6

Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 14 / 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Other useful OpenMP stuff

Default is numthreads = numprocessors. Override export OMP NUM THREADS=n

#pragma directives apply only to the next item. Use {} to create a block.

cout not ‘thread-safe’. Output may be all mixed up. Can safeguard by #pragma omp critical
Generally used to avoid race condition

#pragma omp master means only the master thread will run this
#pragma omp single means only one thread will run this

#pragma omp barrier means wait until all other threads have caught up. Implicit barrier at the
end of the parallel block - can remove with nowait

Variables declared inside the pragma block are private, but those declared outside are shared.
Update at your peril! Can override.

Also very useful #pragma omp parallel for followed by for loop.

#pragma omp parallel can be nested

Setting the AFFINITY environment variable can give a big speedup

Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 15 / 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

OpenMP - spot the difference

Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 16 / 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

MPI - toy program
4 of the 6 essential MPI functions

include mpi.h header file
compile with mpicc -o program program.cc
run with mpirun -np nprocs program
#include <mpi.h>

#include <iostream>

void main(){
MPI Init();

int rank,size;

MPI Comm rank(MPI COMM WORLD,&rank);

MPI Comm size(MPI COMM WORLD,&size);

cout<<" process "<<rank <<" out of "<<size <<endl;

MPI Finalize();

}
So far not much different from OpenMP - but all processes are started
together, and variables private

Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 17 / 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

MPI - doing stuff
The other two functions

MPI send(buffer,size,datatype,dest,tag,MPI COMM WORLD)

Sends a buffer to process dest. datatype is MPI::INT, MPI::FLOAT or
whatever. tag is for your convenience .
This returns only when the message has been safely sent (’blocking’).
Nonblocking alternatives are available

MPI receive(buffer,size,datatype,source,tag,MPI COMM WORLD,&

status)

Waits for any message of type tag from process source of this datatype.
size is the maximum - to find the actual size use
MPI Get count(&status,datatype,&count)

So a typical program has a switch on the rank, and undertakes different
roles accordingly. The rank 0 (master) process will send messages and wait
for answers, the others will wait for messages and send answers.

Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 18 / 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

the Xeon Phi
Slide stolen from Steve Pickles

Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 19 / 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to use them

Phi behaves like separate computer - can log in to it from the host with
ssh mic0

(lots of this Phi stuff is called ’mic’ - for Many Integrated Core architecture
Host and Phi share filespace
Compile Phi programs on the host with -mmic option. (Host and Phi
binaries are not compatible)

Or can run in the host and offload to the Xeon Phi - as a co-processor
#pragma offload target(mic) input(A:length(2000))

Or can run openmp and/or mpi
or various combinations of these: offloaded block can contain openmp
parallelism to exploit all the cores
The Intel Math Kernel Library (MKL) can take full advantage. Automatic
offload by setting MKL MIC ENABLE=1

Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 20 / 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Plans.....

We have 4 Xeon Phis each wth 60 cores!
And we’re not using them
M Eng project student didn’t manage - but we learned a lot.

1 Back up user files, including software (Geant4, talys...)

2 Replace Fedora23 with CentOS

3 Restore user files (should be no difference - except your password will
change)

4 Re-install various packages (torque, httpd....)

5 Install Intel MPSS, MKL, compilers etc

6 Start exploiting all those cores!

Roger Barlow (IIAA, Huddersfield) Faster programs June 8, 2016 21 / 21

