Geant4

L ecture 4: Getting at the numbers

Hierarchy

The Run. A sequence of events with the same geometry, source, etc. Probably one run per job.

The Event. One call to the particle gun, and everything that follows.

The Track. A particle from start to finish. Less important - more later

; Corresponding objects RunAction, EventAction, TrackingAction, SteppingAction.
f Optional - you provide them. Run, Event, Track have function call at start and end

The Step. One particle moves a small distance and stuff happens. A track is a sequence of steps.

Example: fire particles at a block. Plot the energies deposited. 680
« SteppingAction: score the actual energy deposits X 30
» EventAction: keep track of which deposit is in which event 0

* RunAction: Sort stuff at the beginning. Print/plot/tidy up at the end.

N B Lo e o

- I

Py

o g o oy . B

4 |_ecture 4

BiSteppingActions :B1SteppingAction({BlEventAction* eventAction)

+ G4lserSteppingAction(),
.cc file

fEventAction{eventAction),

B1AeppingAction: :“BlSteppingAction()
Ficout<<"B1SteppingfAction deleted n":}
class BlSteppingAction § public GdllserStepps
1 bl /ey 00000000000, , 44 ,.,,00000000000,,,,,,,,00000000000,,,,.,,,00000000000,,,,..
public:
B1SteppingAction(BlEventAction™ suertfct i void BlSteppingAction::UserSteppingfAction{const G4Step* step)
virtual “Bi1SteppingfAction():
G4cout<<"BlSteppingAction called'n":
/7 method from the base class if (1fScoringVolume) {
virtual void UserSteppingAction{ca 4Step*): const BlDetectorConstruction*® detectorConstruction
= static_cast<{conzt BlDetectorConstruction®>

privates: {G4RunManager: :GetRunManager()->GetlUserDetectorConstruction()) :
BlEventAction®* fEventAction: fScoringVolume = detectorConstruction->GetScoringYolume():
G4LogicalVolume* fScoringVolume

¥:
/¢ get volume of the current step
G4LogicalVolume* volume
= step->GetPreStepPoint()->GetTouchableHandle()
->GetYolume()->GetLogicalYolume():

/¢ check if we are in scoring volume
if {volume != fScoring¥olume) return:

/¢ collect energy deposited in this step
Gddouble edepStep = step->GetTotalEnergyleposit():
) fEventAction->AddEdep(edepStep)

/e 00000000000, ,,4....00000000000,,,,....,00000000000,,,....,.00000000000,,,...

G4Step accessible inside

Steppmgactlon

GetTotalEnergyDep051t
GetNonIonl21ngEnergyDep051t()
GetNumberOfSecondariesInCurrentStep ()
GetSecondaryInCurrentStep ()

GetTrack ()
GetTrackID ()
GetParentID ()

GetPreStepPoint () (also GetPostStepPoint)

GetPosition ()
GetMomentumDirection ()
GetGlobalTime ()
GetLocalTime ()
GetMomentum ()
GetKineticEnergy ()
GetTouchableHandle ()

GetVolume ()

GetLogicalVolume

.t el o oo

What might you do”

Just stuff - eg for shielding calculations. Direct from
SteppingAction

* Find the total energy deposited (dosimetry)

* Find the total flux (track length)

 Count number of particles (of some type) crossing boundary

Detector simulation - SteppingAction processed by EventAction

* Find the time a track enters the detector

* Find the position that a hodoscope or tracking chamber would
report

* Find energy deposited in this volume in this event

3
3
s
<
q
4
L

Hits and Digits

Remember G4 was written for simulating detectors

Particles interact in detector (‘hit’) producing a signal

which is amplified and read out by the electronics

(‘digits’)
Example: Track goes through
scintillator. Light pulse amplified by
phototube and sets voltage level
when threshold exceeded. Good
timing accuracy but poor space
and energy resolution

LA A & N N N N N N _
— -
—
o — (=]

B¢
-
— —> —

(L A N B R N N N N N J

& .

< o
f 1w « path of » W e
!l Iy 1 L+ 1T KN

photomultiplier

S - 10 mum thick scintillator

sheet : "
—— i

e

Nahaan

Example: Track goes through gas
creating electrons which drift
towards a wire (known velocity)
where they multiply and give a
signal. Good position but poor
energy resolution: timing needed.

4 |_ecture 4

void BlActionInitialization::Build() const

d

Setlserfiction{new B1PrimaryGeneratorfction):

Bl1RunAction*® runAction = new BlRunAction:
SetlserAction{runAction):

BlEventAction*® eventAction = new BlEventAction{runAction):
SetlserfAction{eventAction):
Que

look

SetUserfAction{new B1SteppingAction(eventAction)):

Elass B1SteppingAction : public GdlserSteppingAction

public?
Bi1SteppingAction{BlEventAction* eventAction):
virtual “BiSteppingAction():

/¢ method from the base class

i . - X -
virtual void UserSteppingfction(const GdStep™): B1SteppingAction: :B1SteppingAction{BlEventAction* eventAction)

+ GdllserSteppingAction(),
BlEventAction* fEventAction: fEventAction(eventAction).

. : . fScoringVolume(0)
), G4LogicalVolume* fScoringVolume: {Gdcout<<"B1SteppingAction createdin":}

private:

SteppingAction and
EventAction

Want to know the energy deposited in each event.
Stepping action obtains the energy deposited in this step
Variable needed to store running total for this event
SteppingAction increments it

EventAction zeros it at the start, processes it at the end

s Bil on ¢
blic: /7 s 00000000000, ,,,,.,,,00000000000,,,,...,,00000000000
BlEve BiRy
virtual "B Nntac nid B 4
ir 1 void BeginOfE G4Eve Ede
1 End0f Event* event): -
/¢ collect energy deposited in this step
void RddEdep((4double edep) { fEdep 4= edep: Gddouble edepStep = step->GetTotalEnergyleposit(): 00000000000,00000000000.00000000000.
. fEventAction->AddEdepiedepStep) ¢
. d BlEventfAction::End 1
ble
accunulate stat
HCTlon~ ddEde i

From B1SteppingAction.céﬁ
From Bl1EventAction.hh From Bl1EventAction.cc

o e o o

http://b1eventaction.cc
http://b1eventaction.cc
http://b1eventaction.cc

Alternative design” g

Make fEdep member data in SteppingAction?

Then accumulation would be easier.
fEdep += step->GetTotalEnergyDeposit () ; ﬂ

Event Start and End actions more complicated as
EventAction would need to know about |
SteppingAction, but not vice versa |

Make fEdep global?

Then accumulation would be easier.
fEdep += step->GetTotalEnergyDeposit () ;

Event Start and End actions also simple. No need for
EventAction or SteppingAction to know about each other

]»
]
i
;
/
'
]
x’
i
;_
;
r
l
j
+
:
1
]
:
;
' 9
4
]
x’
i
| S— AN o - o e a e e e e = o o o e _ e _ e e mk e ek s . — o e e

Global Data

Defined once, outside any function or class definitions.

ypically in file continuing main program

To use it In separate file, you declare it with extern

G4double fEdep;

// in your main program file but before int main () {..

extern G4double fEdep;// in SteppingAction.cc or wherever

Global data is

d

q

P

'inciple of data e
nd the compiler

fected through ca

Breaks
ncapsulation, i.e. the programmer
Know that variables can only be

s to the objects that contain them.

But It can save much hassle.

10

B Lo e o v

http://steppingaction.cc

I o il el C s — o S e e B di G oA = M il bl kadl fadieidih o ST Sl B

What about RunAction? ?
Typical cases ?

Run start Every Event Run end

:
i

EventAction needs access to the RunAction data (counts, :
histogram, file...) ‘

11

e a o e gl o - P " B e e 8 o o s aa e PP I PR

S i = Saa = M e i G T = M il - = hadbacnss Sadiid it s = fadieidih o S

Do you need the Run
Manager®?

Possibly not.

If there is one run per job, then the EventManager
constructor and destructor are called at the beginning
and end of the job, and you may be able to put initial
and final stages there

Final stage must not rely on data in other classes
which may have been destroyed first

Like many design choices, there are lots of right
answers and no universal ‘best’ practice.

12

A (o o 2 o e e B Lo poamal > oo s L e e o _ . P _ e a o e gl o - P " B e e 8 o o s aa e PP I PR

Minimal File Output

e I[N Eventaction.hh add #include <fstream> and data
member std: :ofstream resultsfile;

e [N Eventaction.cc

1. add to constructor resultsfile.open (“yourfilename”) ;

1f (lresultsfile.i1s open()) {Gdcout<<“file not opened”;

exit (1) ;}

2. add to destructor resultsfile.close () ;

3. addto EndOfEventAction
resultsfile<<whatever<<G4endl;

13

http://resultsfile.is

HIistograms

You can use ROOT to book, fill and draw histograms. This adds
another layer of complexity that we’'ll avoid.

Dumping stuff to file and histogramming it later with R or
MATLAB or ... is the best way for many purposes

It your files are enormous, binary files will save you a large factor.

A simple histogrammer is easy to write if you know what you

want - say 20 bins between -5 and 5. N class
definition, N
EventAction, IN

Destructor. Adapt to your own particular neeeds

14

Other Actions (1) Tracking

You can define a TrackingAction. Inherits from
G4UserTrackingAction

Calls PreUserTrackingAction (G4Track*)
and PostUserTrackingAction (G4Track*)

Called before and after a track - a sequence of
steps within an event (an event can have many
tracks)

15

Information in G4 Track

GetTracklD() - a number to identify track
GetParent|D() - likewise. Zero for primary
GetDynamicParticle() - kinematic variables
GetParticleDetinition() - book values of mass, width,
charge name etc

and more

16

There are usually lots of ways of accessing the information you want.

Finding an example and copying it is not good, as the person you're copying code
from is probably no more knowledgeable than you

Finding a tutorial is a bit better, but often the tutorial is illustrating a different problem.

For example, suppose you want to know the particle velocity. One example may tell
you a way to find the energy. Another may tell you how to find the mass. Problem
solved! But you can actually access the velocity directly.

The best way to see what data and methods are in a class is to look at the source
code in the .hh files. (No need to look at the .cc files). They are in /nome/software/geant/
geant4.10.03/source/<directory structure>/include . The dlreCtOry STFUCTUFG |S messy TO flﬂd

what's where | recommend find /home/software/geant/geant4.10.03/source/
classname.hh | grep classname

[r ranrl‘i iaal G4L4]$ find ‘home/softwares 4v ant/ ge: -m'r.4.1(2'.IZZII.':'I.-"':S:CIurw::e. G4ParticleGun,hh | grep G4Particlelun
Jhome/sof tware/geant/geant4,10,03/source/event/src/GAParticleun, cc

.-"'hl:n me/software/geant/geant4,10,03/source/event/src/GAParticleGuntessenger, cc

Jhome/sof tware/geant/geant4,10,03/source/event i ne 1 ude/G4Particlembessenger , hh

Jhome/sof tware/geant/geant4,10,03/source/event/include/G4Particlean, hh

find: &: No such file or directory

It you have a nice IDE this makes life much easier

17

How do we find out all this stuﬁ"?

e Bt 2

carrrme

N B Lo e o s

_ P E

e o G o

Other Actions (2) Stacking

There is another possibility called StackingAction
You can ignore It

Geant4 starts with a list of tracks from the generation. It processes 4
one track at a time. In doing so more tracks may be generated and;
they are put on the stack, which is LIFO.

StackingAction gives the possibility to re-prioritise tracks so that ?4
ones deemed important are processed first.

Limited use, unless you're really tweaking performance.
Highlights point: these actions can not only be used for recording |
what's happenng, but also for driving the simulation (killing boring
tracks). Lots of the stuff in the code is there for this purpose and
we don't need it.

18

A (o o 2 e e B L Al o m ahio e s B £ _ . P _ e B - P " B e e 8 o o s aa e PP I PR

Where am |7

You want to know about steps in some volumes (detectors) but not others. Or
differently in different volumes (scintillator + drift chamber).

Directly: can look at

step—->GetPreStepPoint () ->GetPhysicalVolume () —>GetName ()

This is the name you gave it in the DetectorConstruction code. So you can
test it against “Shape?2" (or whatever) and take appropriate action.

More efficiently: note physical or logical volume when created in constructor,
store in some data member you've created, and test against

step->GetPreStepPoint () ->GetPhysicalVolume () Of
step->GetPreStepPoint () -—>GetTouchableHandle () -—>GetVolume () ->GetLogicalVolume () ;

Physical or logical? If one LV per PV then PV easier. If several LV per PV need
to get it right

19

Assignment

Simulate 25 GeV protons incident on a 10 cm radius
ball of iron (Aster), cobalt (Dario) and nickel (Mert).

Plot the energy spectrum of pions (i) produced, and
(i) emerging from the ball.

Plot the numbers of pions per event, produced and
emerging. s the distribution Poisson®?

20

