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Estimation
Statistician-speak for ’Measurement’

The general problem

You know the probability (density) function P(x ; a)
Take data {xi}. What is the best value for a?

xi may be single values, or pairs, or higher-dimensional
a may be a single parameter or several. If more than one, sometimes split
into ‘parameters of interest’ and ‘nuisance parameters’
Occasionally estimate a property (e.g. the mean) rather than a parameter

Very Broad definition

An Estimator â(x1 . . . xN) is a function of the data that gives a value for
the parameter a
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A good estimator...

There is no ‘correct’ estimator - but some are better than others

A perfect estimator would be

Consistent â(x1 . . . xN)→ a as N →∞
Unbiassed < â >= a
Efficient < (â− a)2 > is as small as possible
Invariant f̂ (a) = f (â)

No estimator is perfect - the goals are incompatible.
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Examples of Bias

An unbiassed estimator of the mean

Suppose we take µ̂ = x
〈µ̂〉 =

〈
1
N

∑
xi
〉

= 1
N

∑
〈x〉 = 1

N

∑
µ = µ

A biassed estimator of the Variance

Suppose we take V̂ = x2 − x2

So
〈
V̂
〉

=
〈
x2
〉
−
〈
x2
〉

First term is just
〈
x2
〉
. To make sense of second term, note 〈x〉 = 〈x〉 and

add and subtract 〈x〉2〈
V̂
〉

=
〈
x2
〉
− 〈x〉2 − (

〈
x2
〉
− 〈x〉2)〈

V̂
〉

= V (x)− V (x) = V − V
N = N−1

N V

Estimator is biassed! V̂ will, on average, give too small a value

Correct for the bias using V̂ = N
N−1(x2 − x2) and/or σ̂ =

√∑
i (xi−x)2
N−1
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The Minimum Variance Bound
also known as the Cramer-Rao bound

Likelihood (again)

L(a; x1, x2, ...xN) = P(x1; a)P(x2; a)...P(xN ; a)
Probability for the whole data sample, for a particular value of a
Will write L(a; x1, x2, ...xN) as L(a; x) for simplicity

The Minimum Variance Bound (MVB)

For any unbiassed estimator â(x), the variance is bounded

V (â) ≥ − 1〈
d2 ln L
da2

〉 =
1〈(

d ln L
da

)2〉 (1)
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Proof of the MVB

Proof.

Unitarity requires
∫
P(x ; a) dx =

∫
L(a; x) dx = 1

Differentiate wrt a:

0 =

∫
dL

da
dx =

∫
L
d ln L

da
dx =

〈
d ln L

da

〉
(2)

If â is unbiassed 〈â〉 =
∫
â(x)P(x ; a) dx =

∫
â(x)L(a; x) dx = a

Differentiate wrt a: 1 =
∫
â(x)dLda dx =

∫
âLd ln L

da dx

Subtract Eq 2 multiplied by a, and get
∫

(â− a)d ln L
da Ldx = 1

Invoke the Schwarz Inequality
∫
u2 dx

∫
v2 dx ≥

(∫
uv dx

)2
with

u ≡ (â− a)
√
L, v ≡ d ln L

da

√
L

Hence
∫

(â− a)2L dx
∫ (

d ln L
da

)2
L dx ≥ 1

〈
(â− a)2

〉
≥ 1/

〈(
dlnL

da

)2
〉

(3)
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Fisher Information

Lemma

Differentiating Equation 2 again gives
d
da

∫
Ld ln L

da dx =
∫

dL
da

d ln L
da dx +

∫
Ld2 lnA

da2
dx =

〈(
d ln L
da

)2〉
+
〈
d2 ln L
da2

〉
= 0

Hence
〈(

d ln L
da

)2〉
= −

〈
d2 ln L
da2

〉
This is called the Fisher Information. Note how it is intrinsically positive.
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Maximum Likelihood Estimation

Maximise the likelihood (actually the log likelihood)

Maximise ln L =
∑
i

lnP(xi ; a) (4)

d ln L

da

∣∣∣∣
â

= 0 (5)

Is consistent.
Is biassed, but bias falls like 1/N
Is efficient for large N
Is invariant - doesn’t matter if you reparametrise a
Particular problem may be solved in 3 ways depending on complexity

1 Solve Equation 5 algebraically

2 Solve Equation 5 numerically

3 Solve Equation 4 numerically
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Least Squares Estimation

Gaussian measurements of y taken at various x values, with measurement
error σ, and a prediction y = f (x ; a)

P(y ; x , a) = 1
σ
√
2π
e−(y−f (x ,a))

2/2σ2

ln L = −
∑ (yi−f (xi ;a))2

2σ2
i

+ constants

To maximise ln L, minimise χ2 =
∑ (yi−f (xi ;a))2

σ2
i

Differentiating gives the Normal Equations:
∑ (yi−f (xi ;a))

σ2
i

f ′(xi ; a) = 0

If f (x ; a) is linear in a then these can be solved exactly.
Otherwise use an iterative method.
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The Straight Line Fit

Function y = mx + c
Assume all σi the same (extension to general case straightforward)
Normal Equations∑

(yi −mxi − c)xi = 0∑
(yi −mxi − c) = 0

Solution m = xy−x y

x2−x2
c = y −mx
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Diversion: Regression
For most statisticians, ’Regression’ = ’Straight Line fit’

History: Galton and father/son heights

Tall fathers tend to have tall sons - but not that tall. ’Regression towards
mediocrity’

More accurate measurements would not decrease the spread
Ambiguity as to whether to plot x against y or y against x
Paradox: Tall sons tend to have tall fathers - but not that tall!
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Fitting Histograms

Fitting a histogram - error given by Poisson statistics so σ =
√
N

4 methods - increasing accuracy, decreasing speed.
fi (xi ; a) = P(xi ; a)× binwidth

1 Minimise χ2 =
∑

i
(ni−fi )2

ni
. ‘Neyman χ2’. . Breaks if ni = 0

2 Minimise χ2 =
∑

i
(ni−fi )2

fi
. ‘Pearson χ2’. Only for histograms!

3 Maximise ln L =
∑

ln(e−fi f nii /ni !) ∼
∑

ni ln fi − fi . ”Binned ML”

4 Ignore bins and maximise likelihood. Sum runs over Nevents not Nbins .
Have to use for sparse data.
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Errors

For large N, ln L curve is parabola
At the maximum,
ln L(a) = ln L(â) + 1

2(a− â)2 d
2 ln L
da2

−1/
〈
d2 ln L
da2

〉
gives V (â)

(ML saturates MVB)

Approximate
〈
d2 ln L
da2

〉
≈ d2 ln L

da2

∣∣∣
a=â

σâ =
√
− 1

d2 ln L
da2

When a− â = ±σâ,
ln L(a) = ln L(â)− 1

2
Read off errors from ∆ ln L = −1

2
See R.B. arXiv:physics/0403046 for
small print

This gives σ, or 68% errors. Can also take ∆ ln L = −2 to get 2σ=95%,
etc.
If working with χ2, L ∝ e−

1
2
χ2

so take ∆χ2 = 1
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Asymmetric Errors

Typically arise in Poisson situations: say you see1 event. λ = 1.5 is more
likely to fluctuate down to 1 than λ = 0.5 fluctuate up to 1.

Read off σ+ and σ− from the two ∆ ln L = −1
2 crossings

Avoid if possible
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Combination of Asymmetric Errors

Given x ± σx , y ± σy , (and ρxy = 0) the error on f = x + y is
σ2f = σ2x + σ2y (Sum in quadrature)

Given x
+σ+

x

−σ−x
, y

+σ+
y

−σ−y
, (and ρxy = 0), what is the error on f = x + y?

Standard Recipe

Sum in quadrature separately: σ+f
2

= σ+x
2

+ σ+y
2
, σ−f

2
= σ−x

2
+ σ−y

2

This is manifestly wrong as it breaks the central limit theorem

Counterexample

Add N i.i.d. variables with skew likelihood: σ+ = 2σ− .
Standard Recipe reduces both σ+ and σ− by factor 1/

√
N but still skew -

and not Gaussian. Never will be.
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Combining Asymmetric Measurements
Another approach

If you know the likelihood
functions, you can do it
Here red and green curves are
measurements of a
The log likelihood functions
just add (blue)

But we don’t know the full likelihood function: just 3 points (and that it
had a maximum at the second)
Try various models (cubics, constained quartic...) on likely instances
Two most plausible (for details see RB, arXiv:0406120)

ln L = −1
2

(
x−x̂

σ0+σ′(x−x̂)

)2
ln L = −1

2
(x−x̂)2

V0+V ′(x−x̂)
Both pretty good. First does better with errors on log a, second does
better with Poisson.
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How to do it

For each measurement (x , σ+, σ−) find σ and σ′, or V and V ′

Given by σ0 = 2 σ+σ−

σ++σ− , σ′ = σ+−σ−
σ++σ−

or V0 = σ+σ−, V ′ = σ+ − σ−

Find maximum of sum, numerically, and ∆ ln L = −1
2 points

Programs in ROOT and R in
https://doi.org/10.5281/zenodo.2576890
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Using the class
The result

Combining 1.9+0.7
−0.5, 2.4+0.6

−0.8 and 3.1+0.5
−0.4 gives 2.76+0.29

−0.27
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Errors in 2 or more dimensions

For 2 (or more) dimensions,
define regions using contours
in ∆ ln L (or ∆χ2 ≡ −2∆ ln L)

Levels change:
In 2D, cutting at 1σ square
would give 0.682 = 47%.
A 1σ contour gives 39%.

For 68% use ∆χ2 = 2.27
∆ ln L = −1.14
For 95% use ∆χ2 = 5.99
∆ ln L = −3.00
(Values from χ2 distribution -
coming later)
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Nuisance Parameters I
Profile Likelihood - motivation (not very rigorous)

You have a 2D likelihood plot with axes a1 and a2. You are interested in a1 but
not in a2 (’Nuisance parameter’)
Different values of a2 give different results (central and errors) for a1
Suppose it is possible to transform to a′2(a1, a2) so L factorises, like the one on
the right. L(a1, a

′
2) = L1(a1)L2(a′2)

Whatever the value of a′2, get same result for a1
So can present this result for a1, independent of anything about a′2.
Path of central a′2 value as fn of a1, is peak - path is same in both plots

So no need to factorise explicitly: plot L(a1, ˆ̂a2) as fn of a1 and read off 1D values.
ˆ̂a2(a1) is the value of a2 which maximises ln L for this a1
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Nuisance Parameters 2
Marginalised likelihoods

Instead of profiling, just integrate over a2.
Can be very helpful alternative, specially with many nuisance parameters
But be aware - this is strictly Bayesian

Frequentists are not allowed to integrate likelihoods wrt the parameter∫
P(x ; a) dx is fine, but

∫
P(x ; a) da is off limits

Reparametrising a2 (or choosing a different prior) will give different values
for a1
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Systematic Errors
Caution! This contains material some people may find offensive.

There is a lot of bad practice out there. Muddled thinking and following
traditional procedures without understanding.
When statistical errors dominated, this
didn’t matter much. In the days of particle
factories and big data samples, it does.

People are ignorant - ignorance leads to
fear. They follow familiar rituals they hope
will keep them safe.

What is a Systematic Error?

How to deal with them

How to evaluate them

Checking your analysis

Conclusions and recommendations
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What is a Systematic Error?
Systematic error:
reproducible inaccuracy
introduced by faulty
equipment, calibration,
or technique.

Bevington

Systematic effects is a general category which
includes effects such as background, scanning
efficiency, energy resolution, variation of counter
efficiency with beam position, and energy, dead
time, etc. The uncertainty in the estimation of
such a systematic effect is called a systematic
error.

Orear

These are contradictory

Orear is RIGHT

Bevington is WRONG

So are a lot of other books and websites
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An error is not a mistake

We teach undergraduates the difference between measurement errors,
which are part of doing science, and mistakes.

If you measure a potential of 12.3 V as 12.4 V, with a voltmeter accurate
to 0.1V, that is fine. Even if you measure 12.5 V

If you measure it as 124 V, that is a mistake.

Bevington is describing Systematic mistakes

Orear is describing Systematic uncertainties - which are ‘errors’ in the way
we use the term.

Avoid using ‘systematic error’ and always use ‘uncertainty’ or ’mistake’?
Probably impossible. But should always know which you mean
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Examples

Track momenta from pi = 0.3Bρi have statistical errors from ρ and
systematic errors from B

Calorimeter energies from Ei = αDi + β have statistical errors from light
signal Di and systematic errors from calibration α, β

Branching ratios from Br = ND−B
ηNT

have statistical error from ND and
systematics from efficiency η, background B, total NT
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Bayesian or Frequentist?

Can be either

Frequentist: Errors determined by an ancillary experiment (real or
simulated)

E.g. magnetic field measurements, calorimeter calibration in a testbeam,
efficiency from Monte Carlo simulation

Sometimes the ancillary experiment is also the main experiment - e.g.
background from sidebands.

Bayesian: theorist thinks the calculation is good to 5% (or whatever).
Experimentalist affirms calibration will not have shifted during the run by
more than 2% (or whatever)

Some analysis techniques use hybrid of frequentist and Bayesian.
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How to handle them: Correlation

Actually straightforward. Systematic uncertainties obey the same rules as
statistical uncertainties�



�
	We write x = 12.2± 0.3± 0.4 but we could write x = 12.2± 0.5.

For single measurement extra information is small.

For multiple measurements e.g. xa = 12.2± 0.3, xb = 17.1± 0.4, all ± 0.5
extra information important, as results correlated.
Example: cross sections with common luminosity error, branching ratios
with common efficiency ...

Taking more measurements and averaging does not reduce the error.

Consequence

No way to estimate σsys from the data - hence no check from χ2 test etc
Not because systematic errors are unusually hostile - but because
statistical errors are unusually friendly
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Handling Systematic Errors in your analysis
3 types

1) Uncertainty in an explicit continuous parameter:

E.g. uncertainty in efficiency, background and luminosity in branching
ratio or cross section

Standard combination of errors formula and algebra, just like
undergraduate labs. Have to include correlations but this is all handled by
matrices.
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Handling Systematic Errors (2)

Uncertainty in an implicit continuous
parameter such as: MC tuning
numbers (σpT , polarisation......)

Not amenable to algebra

Method: vary parameter by ±σ and look at what happens to your analysis
result (directly, or through efficiency, background etc.)

Note 1: Hopefully effect is equal but opposite - if not then can introduce
asymmetric error, but avoid if you can. Rewrite +0.5

−0.3 as ±0.4

Note 2. Your analysis results will have errors due to e.g. MC statistics.
Some people add these (in quadrature). This is wrong. Technically correct
thing to do is subtract them in quadrature, but this is not advised.
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Handling Systematic Errors (3)

Discrete uncertainties, typically in model choice

Situation depends on status of model. Sometimes one preferred,
sometimes all equal (more or less)

With 1 preferred model and one other, quote R1 ± |R1 − R2|

With 2 models of equal status, quote R1+R2
2 ± |R1−R2√

2
|

N models: take R ±
√

N
N−1(R

2 − R
2
) or similar mean value

2 extreme models: take R1+R2
2 ± |R1−R2|√

12

These are just ballpark estimates. Do not push them too hard. If the
difference is not small, you have a problem - which can be an opportunity
to study model differences.
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Checking the analysis

“As we know, there are known knowns. There are things we know that we
know. There are known unknowns. That is to say, there are things that we
know we don’t know. But there are also unknown unknowns. There are
things we don’t know we don’t know.”

Donald H Rumsfeld
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Checking the analysis: Errors are not mistakes - but
mistakes still happen.

Statistical tools can help find them - though not always give the solution.
Check by repeating analysis with changes which should make no difference:

Data subsets

Magnet up/down

Different selection cuts

Changing histogram bin size and fit ranges

Changing parametrisation (including order of polynomial)

Changing fit technique

Looking for impossibilities

...

Example: the BaBar CP violation measurement “.. consistency checks,

including separation of the decay by decay mode, tagging category and Btag

flavour... We also fit the samples of non-CP decay modes for sin 2β with no

statistically significant difference found.”
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If it passes the test

Tick the box and move on

Do not add the discrepancy to the
systematic error

It’s illogical

It penalises diligence

Errors get inflated

The more tests the better. You cannot prove the analysis is correct. But
the more tests it survives the more likely your colleagues1 will be to believe
the result.

1and eventually even you
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If it fails the test

Worry!

Check the test. Very often this turns out to be faulty.

Check the analysis. Find mistake, enjoy improvement.

Worry. Consider whether the effect might be real. (E.g. June’s results
are different from July’s. Temperature effect? If so can (i)
compensate and (ii) introduce implicit systematic uncertainty)

Worry harder. Ask colleagues, look at other experiments

Only as a last resort, add the term to the systematic error. Remember
that this could be a hint of something much bigger and nastier
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Clearing up a possible confusion

What’s the difference between?�



�
	Evaluating implicit systematic errors: vary lots of parameters, see what

happens to the result, and include in systematic error

�



�
	Checks: vary lots of parameters, see what happens to the result, and don’t

include in systematic error

(1) Are you expecting to see an effect? If so, it’s an evaluation, if not, it’s
a check

(2) Do you clearly know how much to vary them by? If so, it’s an
evaluation. If not, it’s a check.

Cover cases such as trigger energy cut where the energy calibration is
uncertain - may be simpler to simulate the effect by varying the cut.

Roger Barlow (ESHEP19) Statistics for HEP 15th September 2019 36 / 37



So finally:

1 Thou shalt never say ‘systematic error’ when thou meanest
‘systematic effect’ or ‘systematic mistake’.

2 Thou shalt know at all times whether what thou performest is a
check for a mistake or an evaluation of an uncertainty.

3 Thou shalt not incorporate successful check results into thy total
systematic error and make thereby a shield to hide thy dodgy result.

4 Thou shalt not incorporate failed check results unless thou art truly at
thy wits’ end.

5 Thou shalt not add uncertainties on uncertainties in quadrature. If
they are larger than chickenfeed thou shalt generate more Monte
Carlo until they shrink to become so.

6 Thou shalt say what thou doest, and thou shalt be able to justify it
out of thine own mouth; not the mouth of thy supervisor, nor thy
colleague who did the analysis last time, nor thy local statistics guru,
nor thy mate down the pub.

Do these, and thou shalt flourish, and thine analysis likewise.
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