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Goodness of fit
An Example of Hypothesis Testing

You have the ‘best’ fit model - but is it any good?
Fit model of data
Construct some measure of agreement t
between them.
Convention: t ≥ 0, t = 0 is perfect agreement.
Worse agreement → larger t
Null hypothesis H0: The model produced this
data.
Construct p−value: probability under H0 of
getting a t this bad, or worse.
Usually known algebra - can use simulation
(‘Toy Monte Carlo’)

Is p−value the same as α? Sort of. Both are∫
bad region

P(t) dt. But α is a property of a
test, p of a particular dataset.
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χ2 Distribution
far and away the most popular measure of (dis)agreement

Total squared scaled differences

χ2 =
∑N

1

(
yi−f (xi )
σi

)2

Obviously
〈
χ2
〉
≈ N.

Turns out to be exact.
P(χ2;N) = 1

2N/2Γ(N/2)
χN−2e−χ

2/2

To find p−value: in ROOT
TMath::Prob(chisquared,ndf),
in R 1-pchisq(chisquared,ndf)

Examples

If N = 10, χ2 = 15 then p = 0.13. Probably OK
If N = 10, χ2 = 20 then p = 0.03. Probably not OK

Useful fact

Least-Squares-Fitting the data clearly reduces χ2. This also follows a χ2

distribution for N = Ndata − Nparameters ‘Degrees of freedom’
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χ2 fitting - comparison

If χ2 is suspiciously big there are 4 possible reasons

1 Your model is wrong

2 Your data are wrong

3 Your errors are too small

4 You are unlucky

If χ2 is suspiciously small there are 2 possible reasons

1 Your errors are too big

2 You are lucky
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Likelihood and Wilks’ Theorem

The Likelihood on its own tells you nothing
(even if you include the constant factors normally omitted in maximisation)
Wilks’ Theorem says: Given two nested models, for large N the
improvement in ln L is distributed like χ2 in −2∆ ln L, with NDF the
number of extra parameters

Example: Model 1 is straight line, Model 2 is quadratic, NDF = 1
Run Model 1. Run Model 2. Likelihood increases as more parameters
available. If 2× this increase is significantly more than 1 that justifies
using Model 2 rather than Model 1.
So works for comparisons, but not absolutely

Important exception

Does not apply if Model 2 contains a parameter which is meaningless
under model 1. Model 1 is background, Model 2 is background +
unknown Breit-Wigner. (Mass, width and normalisation)
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Using Toy Monte-Carlo for Likelihood and goodness of fit

Obvious suggestion: Take the fitted model, run many simulations, plot the
spread of fitted likelihoods and use to get p−value
This is wrong - J G Heinrich, CDF/MEMO/BOTTOM.CDFR/56301

Test case: model simple exponential P(t) = 1
τ e
−t/τ

Then whatever the original sample looks like you get
Log Likelihood =

∑
(−ti/τ − ln τ) = −N(t/τ + ln τ)

ML gives τ̂ = t = 1
N

∑
i ti

and this max log likelihood is ln L(τ̂ ; x) = −N(1 + ln t)
Any distribution with the same t has the same likelihood, after fitting.

What you can do: Histogram the p(xi ; â) values. This should be flat
(almost- the fitting will distort it).
If not enough data - cumulative plot should be straight line. Use max
deviation as test statistic. Apply K-S test or use toy Monte Carlo.

1Many thanks to Jonas Rademacker for pointing this out
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Frequentist Confidence

What is the probability that it will rain tomorrow?
There is only one tomorrow.
It will either rain or not rain.
The probability Nrain/Ntomorrows is either 0 or 1.
Prain is ”unscientific” [von Mises]

This is unhelpful
Suppose the forecast says it will rain.
Studies show this forecast is correct 90% of the time
The statement ‘It will rain tomorrow’ has a 90% probability of being true.
We can say ‘It will rain tomorrow’ with 90% confidence.
(Note how this depends on the ensemble used.)
We state X with confidence P if X is a member of an ensemble of
statements of which at least P are true.
Note that ’at least’. 2 reasons

1 Higher confidences embrace lower ones. If X at 95% then X at 90%

2 Caters for composite hypotheses, with unknown parameters
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Measurements

Example

Q:A herd of bison have a mean weight of 1250 kg
and a standard deviation of 240 kg. What is the
probability that particular bison has a mass
1010 < MB < 1490kg?
A: 68%

Example

MH has been measured as 125.18± 0.16 GeV
Q: What can we was about the probability that
125.02 < MH < 125.34GeV
A: Nothing. There is only one MH - Future
experiments will determine it to very high
precision - and it either is in the range or not.

Roger Barlow (ESHEP19) Statistics for Particle Physics 16th September 2019 9 / 37



What frequentists can say about the Higgs mass
or any other measurement

MH has been measured with a technique that will give a value within 0.16
GeV of the true value 68% of the time
If we say the true value lies within ±σ we will be correct 68% of the time

We say: 125.02 < MH < 125.34GeV with 68% confidence.
The statement is either true or false (time will tell) but belongs to a
collection of statements of which (at least) 68% are true.
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Confidence Regions
also known as Confidence Intervals

Interval [x−, x+] such that∫ x+

x−
P(x) dx = CL

Choice over probability content CL
(68%, 90%, 95%, 99%...)
Choice over strategy

1 Symmetric: x̂ − x− = x+ − x̂

2 Shortest: Interval that
minimises x+ − x−

3 Central:
∫ x−
−∞ P(x) dx =∫∞

x+
P(x) dx = 1

2 (1− CL)

4 Upper Limit: x− = −∞,∫∞
x+

P(x) dx = 1− CL

5 Lower Limit: x+ =∞,∫ x−
−∞ P(x) dx = 1− CL

For the Gaussian (or any symmetric
pdf) 1-3 are the same
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Confidence Belts

Measured x = 100 from Gaussian measurement σ = 10, say [90,110] is
68% central confidence region
Bit more complicated: x = 100 from Gaussian measurement σ = 0.1x
(10% measurement)
90 gives 90± 9 but 110 gives 110± 11. 90 and 110 not equidistant.�� ��Confidence Belts are constructed horizontally and read vertically

1 For each a, construct desired
confidence interval
(here 68% central)

2 The result (x , a) lies inside the
belt, with 68% confidence.

3 Measure x

4 The result (x , a) lies inside the
belt, with 68% confidence.

5 Read off a+ and a−: 111.1, 90.9
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Confidence Belts for the Poisson Distribution
Almost the same idea

Horizontal axis is discrete

For central 90% confidence
require for each a the largest
rlo and smallest rhi for which∑rlo−1

r=0 e−a a
r

r ! ≤ 0.05∑∞
r=rhi+1 e

−a ar
r ! ≤ 0.05

For the second, easier to
calculate∑rhi

r=0 e
−a ar

r ! ≥ 0.95

Whatever the value of a, the probability of the result falling in the belt is
90% or more. Proceed as for Gaussian...
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Coverage

The probability, given a, that the statement ‘alo ≤ a ≤ ahi ’ will be true
May exceed the quoted confidence level (‘overcover’) but should never be
less (‘undercover’)

Example: suppose a = 3.5 and we want a 90% central limit
There is a probability e−3.5 =3% of getting 0
events, leading to ahi = 3.0, which is wrong
There is a probability 3.5e−3.5 =11% of getting 1
event, leading to ahi = 4.7, which is right
...
There is a probability 3.57e−3.5/7! =4% of
getting 7 events, leading to alo = 3.3, which is
right
There is a probability 3.58e−3.5/8! =2% of
getting 8 events, leading to alo = 4.0, which is
wrong
Total ’right’ probability 94%. - 4% overcoverage
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Upper Limits
Why all this matters

Many analyses are ‘searches for...’ ... most of these are unsuccessful

But you have to say something! Not just ‘We looked but didn’t see
anything.’

Use upper limit confidence region as way of reporting: ‘We see nothing, so
a ≤ ahi at some confidence level.’

Example

Simple use case : P(0; 2.996) = 0.05 and 2.996 ∼ 3. So if you see 0
events, you can say with 95% confidence that the true value is less than
3.0
Use this to calculate limit on branching fraction, cross section, or whatever
you’re measuring
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Bayesian ‘credible intervals’

Bayesian has no problems saying ‘It will probably rain tomorrow’ or ‘The
probability that 125.02 < MH < 125.34GeV is 68%’

Downside is that another Bayesian can say ‘It will probably not rain
tomorrow’ and ‘The probability that 125.02 < MH < 125.34GeV is 86%’
with equal validity.

Bayesian has posterior (or prior) belief pdf P(a) and defines region R such
that

∫
R P(a) da = 90% (or whatever)

Same ambiguity as to choice of content (68%, 90%, 95%...) and strategy
(central, symmetric, upper limit...). So Bayesian credible intervals look a
lot like frequentist confidence intervals. But they mean something subtley
different.
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Two happy coincidences

Gaussian Limits

Bayesian credible intervals on Gaussians, with a flat prior, are the same as
Frequentist confidence intervals
F quotes 68% or 95% or ... confidence intervals.
B quotes 68% or 95% or ... credible intervals.
They are numerically the same

Poisson upper limits

The Frequentist Poisson upper limit is given by
∑r=rdata

r=0 e−ahi arhi/r !
The Bayesian Poisson flat prior upper limit is given by∫ ahi

0 e−aardata/rdata! da
Integration by parts gives a series - same as the Frequentist limit
Bayesian will also say : ‘I see zero events - the probability is 95% the true
value 3.0 or less.’
This is a coincidence - does not apply for lower limits
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Limits in the presence of background
When it gets tricky

Typically background NB and efficiency η, and want NS = ND−NB
η

(Uncertainties in η and NB handled by profiling or marginalising)
Actual number of background events Poisson in NB .

Straightfoward case

See 12 events, expected background 3.4, η = 1: NS = 8.6
though error is

√
12 not

√
8.6

Hard case

But suppose you see 4 events. or 3 events. Or zero events...
Can you say NS = 0.6? or −0.4? Or −3.4???

We will look at 4 methods of getting out of this fix

Example

See 3 events with expected background 3.40. What is the 95% limit on
NS?

Roger Barlow (ESHEP19) Statistics for Particle Physics 16th September 2019 18 / 37



Method 1: Pure frequentist

ND − NB is an unbiassed estimator of NS and its properties are known
Quote the result. Even if it is non-physical

Argument for doing so

This is needed for balance: if there is really no signal, approx. half of the
experiments will give positive values and half negative. If the negative
results don’t publish, but the positive ones do, people will be fooled.

If ND < NB , we know that the background has fluctuated downwards. But
this cannot be incorporated into the formalism�
�

�
�

Upper limit from 3 is 7.75, as
∑3

0 e
−7.757.75r/r ! = 0.05

95% upper limit on NS = 7.75− 3.40 = 4.35

What if NB were 8.0? Then publish −0.25! For a 95% confidence limit
one accepts that 5% of the results can be wrong. This (unlikely) case is
clearly one of them. So what?
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Method 2: Go Bayesian

Assign a uniform prior to NS , for NS > 0, zero for NS < 0.
The posterior is then just the likelihood,

P(NS |ND ,NB) = e−(NS+NB) (NS+NB)ND
ND !

Required Limit from integrating
∫ Nhi

0 P(NS) dNS = 0.95

P(NS) ∝ e−(Ns+3.40) (Ns+3.4)3

3!
Limit is 5.17

0 2 4 6 8 10

0.
00
0

0.
00
1

0.
00
2

0.
00
3

0.
00
4

Ns

P
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Method 3: Feldman-Cousins 1: Motivation
The Unified Approach

In principle, can use 90% central or
90% upper limit, and the probability
of the result lying in the band is at
least 90%.
In practice, you would quote an
upper limit if you get a low result,
but if you get a high result you would
quote a central limit. Flip-flopping.
Break shown here for r = 10
Confidence belt is the green one for
r < 10 and the red one for r ≥ 10.
Probability of lying in the band no
longer 90%. Undercoverage. Method
breaks down if used in this way
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Method 3: Feldman-Cousins 2: Method

Plot r ≡ ND horizontally as before, but NS vertically. So different NB →
different plot. Probability values P(r ;Ns) = e−(Ns+NB) (NS+NB)r

r !

For any NS have to define region R such that
∑

rεR P(r ;Ns) ≥ 90%.

First suggestion: rank r by probability and take them in order (would give
shortest interval)
Drawback: outcomes with r << NB will have small probabilities and all
NS will get excluded. But such events happen - want to say something
constructive, not just ‘This was unlikely’

Better suggestion: For each r , compare P(r ;Ns) with the largest possible
value obtained by varying NS . This is either at NS = r − NB (if r ≥ NB)
or 0 (if r ≤ NB ) Rank on the ratio
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Method 3: Feldman-Cousins 3: Example

Flip-flopping incorporated! Coverage is correct.
For r = 3 get limit 4.86

Have to re-compute confidence belt specifically for each background
number. Not a problem.
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Method 3: Feldman-Cousins 4: Discussion

There are two arguments raised against the method
It deprives the physicist of the choice of whether to publish an upper limit
or a range. Could be embarrassing if you look for something weird and are
‘forced’ to publish a non-zero result. But isn’t this the point?

If two experiments with different NB get the same small ND , the one with
the higher NB will quote a smaller limit on NS . The worse experiment gets
the better result!
But for an event with large background to get a small number of events is
much less likely.
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Method 4: CLs

CLs+b: Probability of getting a result
this small (or less) from s + b events.
Same as strict frequentist.

CLb: CLs+b for s = 0 - no signal,
just background

CLs = CLs+b

CLs

Apply as if confidence level 1− CLs
Result larger than strict frequentist (’conservative’) (’over-covers’)
In our example 8.61 for s + b, 5.21 for s
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Summary so far

Given 3 observed events, and an expected background of 3.4 events, what
is the 95% upper limit on the ‘true’ number of events?
Answers:

Strict Frequentist 4.35
Bayesian (uniform prior) 5.17

Feldman-Cousins 4.86
CLs 5.21

Take your pick!
All are correct. (Well, not wrong.)

Golden Rule

Say what you are doing, and if possible give the raw numbers
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Extension: not just numbers

Simple counting not (usually) exploiting full information
Better: Likelihood
lnLs+b =

∑
i lnNsS(xi ) + NbB(xi ) lnLb =

∑
i lnNbB(xi )

Look at Ls+b/Lb, or −2 ln (Ls+b/Lb)
Get confidence quantities from simulations/data
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Extension: From numbers to masses

Limits on Numbers-of-events/signal strength may translate to limits on
Branching Ratios

BR =
Ns

Ntotal

or limits on cross sections

σ =
Ns∫
Ldt

These may translate to limits on other parameters, depending on the
theory

In some cases (e.g. MH) these parameters also affect detection efficiency,
and may require changing strategy (hence different backgrounds)
Need to repeat analysis for all (of many) MH values

Roger Barlow (ESHEP19) Statistics for Particle Physics 16th September 2019 28 / 37



Significance plots

For each MH (or whatever): find
signal and plot CLs (or whatever)
significance of signal

Small values indicate: unlikely to get
a signal this large just from
background

Often also plot expected (from MC)
significance assuming signal
hypothesis is true. Better measure of
’good experiment’
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Brazilian Band plots
Green-and-yellow plots

Basically same data, but fix CL at
chosen value (here 95%)

At this value, find limit on signal
strength and interpret as σ/σSM

Again, plot actual data and expected
(from MC) limit, with variations.

If there is no signal, 68% of
experiments should give results in the
green band, 95% in the yellow band

f
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Claiming a discovery
Remember Hypothesis testing?

To claim a discovery, show that your data can’t be explained without it
Quantified by p−value. Probability of getting a result this extreme (or
worse) under the null hypothesis/Standard Model.
Not ‘The probability that the Standard Model is correct’

Sigma language

Often translated into Gaussian-like language: the probability of a result
more than 3σ from the mean is 0.27%... a p−value of 0.0027 is a ‘3 σ
effect’ (or 0.0013 depending on 1-tailed or 2-tailed. Both are used.)

3 sigma 0.0013 ’Evidence for’ 5 sigma 0.0000003 ‘discovery of’

Some journals (Psychology) refuse to publish papers giving p−values
Why? Do lots of studies. Some will have low p−values (5% below 0.05
etc). Publish those and bin the rest...
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The ”Look Elsewhere” effect

Why 5 σ. Isn’t that excessive?

How many peaks are there in this plot?

None

With 100 bins, a p−value below 1% is pretty likely

This can be factored in to some extent, using pseudo-experiments

Does not factor in sheer number of plots being produced by physicists
looking for something

Not just ancient history

Digamma(750) excess 3.9σ (ATLAS) 3.4σ (CMS)
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Blind Analysis

“It was easy - I just got a block of marble
and chipped away anything that didn’t look
like David.”

Michaelangelo Buonarotti(attrib.)

Maybe good way of creating sculpture - but very bad way of doing physics

To resist temptation, devise cuts before looking at the data. Use Monte
Carlo simulations, and/or data in ‘sidebands’. Only when cuts are
optimised do you ‘open the box’.

Some experiments have formal apparatus for doing this.
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The top quark ‘discovery’ at UA1

W → tb and t → b`±ν

2 b jets, charged lepton, missing
energy

Find 6 events. Plot total mass
against b`±ν mass (ν from missing
energy/momentum)
W mass in right place
t mass around 40 GeV

Turned out to be background - and very creative selection cuts
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The ζ(8.3)

“Discovered” in 1984 by the Crystal Ball experiment at DESY.

e+e− storage ring (DORIS) with energy
9.46 GeV, the mass of the Υ meson (which
is a bb bound state)

Measure energy of photons

Single energy peak seen!!

Signals e+e− → Υ→ ζγ
4.2 sigma effect
Plots show (a) raw data , (b) fit, and (c)
background-subtracted fit

When more data was taken (in 1985) the peak went away.
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The z(750)

“Discovered” in 2015 by the ATLAS and CMS experiments at the :HC.

Invariant mass of pairs of high energy
photons from proton proton collisions
(Hence the name ’digamma’)

3.6 sigma in ATLAS, 2.6 sigma in
CMS

When more data was taken (in 2016) the peak went away
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Conclusions

Statistics is a tool for doing physics.

A good physicist understands their tools.

Read books and conference proceedings, go to seminars, talk to people,
experiment with the data, and understand what you are doing.

And you will succeed.

Have a great time!
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