
Gene Expression Programming
with the FRANKENSTEIN package

Roger Barlow

The University of Huddersfield

November 7th, 2019

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 1 / 27

Solving a problem(1)
The obvious traditional approach

Write a program

Carefully consider goals, use cases, exceptions...
Using expertise and hard work

Intelligent design

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 2 / 27

Solving a problem(1)
The obvious traditional approach

Write a program

Carefully consider goals, use cases, exceptions...
Using expertise and hard work

Intelligent design

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 2 / 27

Solving a problem(1)
The obvious traditional approach

Write a program

Carefully consider goals, use cases, exceptions...
Using expertise and hard work

Intelligent design

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 2 / 27

Solving a problem(1)
The obvious traditional approach

Write a program

Carefully consider goals, use cases, exceptions...
Using expertise and hard work

Intelligent design

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 2 / 27

Solving a problem (2)
Nature’s way

Many small feeble programs

And a final super-program

Evolution – Natural selection – survival of the fittest
heredity – random mutations

But how can you randomly modify a program without breaking it?

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 3 / 27

Solving a problem (2)
Nature’s way

Evolve to bigger and better programs

And a final super-program

Evolution – Natural selection – survival of the fittest
heredity – random mutations

But how can you randomly modify a program without breaking it?

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 3 / 27

Solving a problem (2)
Nature’s way

And a final super-program

Evolution – Natural selection – survival of the fittest
heredity – random mutations

But how can you randomly modify a program without breaking it?

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 3 / 27

Solving a problem (2)
Nature’s way

And a final super-program

Evolution – Natural selection – survival of the fittest
heredity – random mutations

But how can you randomly modify a program without breaking it?

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 3 / 27

K language
C Ferreira ”Gene Expression programming: Mathematical Modelling by an Artificial
Intelligence”, Springer (2006)

A program to evaluate any formula can be drawn as a tree and then
uniquely written down as a string

−b+
√
b2−4ac

2a
”/+*!

√
2ab-**bb4*ac”

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 4 / 27

K language syntax

Two sorts of string symbols:

Functions

Monadic, with 1 argument (sqrt, sin, cos, log, exp, !...)
Dyadic, with 2 arguments (+, *, /, - ...)

Terminators

Constants (2,4...)
Variables (a, b, c)

Bases for genetics, equivalent of ACGT in DNA (so larger alphabet)
Exact choice depends on problem - up to the user

Gene (fixed length) contains program(variable, up to length of gene).
Program starts with 1st gene element and finishes when complete.
Anything over is ‘junk DNA’.
Gene divides into head and tail. NH + NT = NG and NT > NH

Rule#1: There can be no functions in the tail
Any gene obeying Rule#1 contains a valid program

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 5 / 27

Genetics

Create population of genes, fill at random (subject to Rule #1)

Cycle through many generations (size of population is constant)

Each gene/program is evaluated (‘score’)
The highest-scoring program survives and is not modified (elitism)
A random number of copies is made of each program, proportional to
its score (Roulette wheel)
Point mutations
Transpositions (root and non-root)
Information Exchange (1-point and 2-point)

It is good to do this several times (parallel universes)

Genes may undergo several mutations from one generation to the next

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 6 / 27

The scoring function

Turns out to be surprisingly important
Larger score is better program - for fitting this means smaller∑

(yi − f (xi))2

Need wide range of scores for roulette to get leverage. Weaklings must die!

But too much differentiation can flood the gene pool with
good-but-not-excellent genes
Ferreira recommends

∑
(R − |yi − f (xi)|), where R is max possible range.

(If infinite, need to choose R and set any negative contributions to zero)

This does better than the ‘more elegant’
∑ 1

1+(yi−f (xi))2

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 7 / 27

An example

Suppose y = x + x2 + x3 + x4

Evaluated for x = {2.81, 6, 7.043, 8, 10, 11.38, 12, 14, 15, 20}
Fit with population of 100, gene length 41 (=20+21)
Operations +-*/, variable x, no constants
Maximum distance for scoring R = 100

First generation: Score 65.1 with
∗ − − ∗+x − ∗/x + //+ +x/+− ∗
xxxxxxxxxxxxxxx which is 4x3 − 3x

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 8 / 27

An example

Suppose y = x + x2 + x3 + x4

Evaluated for x = {2.81, 6, 7.043, 8, 10, 11.38, 12, 14, 15, 20}
Fit with population of 100, gene length 41 (=20+21)
Operations +-*/, variable x, no constants
Maximum distance for scoring R = 100

First generation: Score 65.1 with
∗ − − ∗+x − ∗/x + //+ +x/+− ∗
xxxxxxxxxxxxxxx which is 4x3 − 3x
Second generation score 903.8 with
+− ∗ ∗ x/+ /+ +/ ∗ x/ ∗ − ∗
∗/xxxxxxxxxxxxxxxx which is
x4 + x3 + x2 + 1

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 8 / 27

An example

Suppose y = x + x2 + x3 + x4

Evaluated for x = {2.81, 6, 7.043, 8, 10, 11.38, 12, 14, 15, 20}
Fit with population of 100, gene length 41 (=20+21)
Operations +-*/, variable x, no constants
Maximum distance for scoring R = 100

First generation: Score 65.1 with
∗ − − ∗+x − ∗/x + //+ +x/+− ∗
xxxxxxxxxxxxxxx which is 4x3 − 3x
Second generation score 903.8 with
+− ∗ ∗ x/+ /+ +/ ∗ x/ ∗ − ∗
∗/xxxxxxxxxxxxxxxx which is
x4 + x3 + x2 + 1
Ninth generation score 1000 with
+− ∗ ∗ x/+ /+ +/ ∗ x/x − ∗ ∗
/xxxxxxxxxxxxxx which is
x4 + x3 + x2 + x

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 8 / 27

Plotting progress

Plot shows improvement with time of best score(black) and mean
score(red) for 10 different universes (above) and their average (below)
Period of improvement, then stable
Some universes get stuck in evolutionary dead ends.
Just because it’s converged doesn’t mean it’s found the answer

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 9 / 27

The parameters

Design parameters for a particular problem:

The alphabet of variables (prescribed), functions (guesswork) and
constants (more guesswork)

The number of generations - the larger the better, up to a point

The number of universes - be generous

The score function

Tunable parameters

L, the Gene length

Npop, the population size - the larger the better, up to a point

Pmu - number of random mutations

Pti - number of non-root transpostiions

Ptr - number of root transpositions

Pr1 - number of single-switch reproductions

Pr2 - number of double-switch reproductions

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 10 / 27

Dependence on L and Npop
Percentage succeeding - success defined as solution found within 100 iterations

Averaged over 1000 universes
Mutation numbers 2.0,0.7,0.7,0.7,0.7

Rate rises and then slowly falls with L
Rises monotonically with Npop

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 11 / 27

Dependence on evolution parameters

L set to 81 and Npop=30
All other parameters zero

Pmu is far more effective than the others

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 12 / 27

Dependence on Evolution parameters

Set Pmu to 2.0: vary the others

Ptr does more harm than good.
Exchange brings slow benefits.
This is a very simple case. Blind chance can work well. More interesting
cases may have different behaviour – but saw same behaviour in more
complicated case.

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 13 / 27

Parallelisation

Readily parallelisable using OMP at the universe level
(One core handling a complete evolutionary system so nothing shared)
Increase from single core to 24 cores increases speed by only factor ∼ 2
Though was occupying ∼ 2400% of the CPU
Using time showed very large system time

Reason

Program needs to generate lots of random numbers
Early version used C++ rand() function.
This is thread-safe but achieves this by imposing bottleneck
Instead use gsl rng with separate allocation (and deletion) for each
universe/thread.
Factor goes up to ∼ 20

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 14 / 27

Extending the model
Constant constants and variable constants

Genetic optimisation good for choosing between models
Ordinary optimization good at determining parameters within models

Idea!

Let’s combine the two

Have two sorts of constants in the K language

1 Constant constants, like 1,2,π...

2 Variable constants, like a, b, c ...

To score a program, first optimize the variable constants

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 15 / 27

Variable constants: numerical minimisation

Use gnu scientific library gsl multimin.h to find best values before
returning score
Two methods:

Without-Dervatives

Simplex (Nelder-Mead) - evaluate function at mesh of random points, use
results to update mesh.

With-Derivatives

Quasi-Newton (Fletcher BFGS2) - use derivatives to get best direction

With-derivatives generally gives much better performance on final
approach - but user has to supply derivative function.
Usual strategy: simplex, followed by quasi-Newton

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 16 / 27

Minimisation: simplex and gradient-based

Function 1.2x + 2.3y sampled at 100 points, x = 0, 1...9, y = 0, 1, ...9

Start at a = 1.15, b = 1.15
Red line is Simplex: reaches a = 1.19967, b = 2.30016 after 40 iterations
Green line is bfgs2 starting after 10th simplex iteration: reaches
a = 1.2, b = 2.3 in just 3 more iterations

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 17 / 27

Differentiation with K language

We are minimising S =
∑

(yi − f (xi , ~a))2

Differentials are dS
daj

= −2
∑

(yi − f (xi , ~a))df (xi ,~a)
daj

Need to differentiate, with respect to a and b, programs like
sin(a + x) + 2a− by ≡ + sin - + * * x a 2 a b y

For each variable the differential is the sum of the differential for each
instance (here 2 instances of a and one of b)
For each instance use chain rule up the tree: if p(x) = q(r(x)), p′ = q′r ′

Here: df
da = cos(a + x) + 2, dfdb = −y

Have to supply functions that give differentials
For sin can use cos. For cos define new function Negsin returning −sin
For dyadic operators have to distinguish between first and second
argument. For simplicity and technical reasons this is done with extra
argument which is + or - for 1st and 2nd, e.g.
double subD(double x,double y, int i) {return(i>0 ? 1 :-1);}

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 18 / 27

Example 1

Number of spallation neutrons from a lead target (60 cm long, 30 cm
radius), as a function of beam energy. (MCNPX simulation: Geant4
similar)

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 19 / 27

Example 1

Number of spallation neutrons from a lead target (60 cm long, 30 cm
radius), as a function of beam energy. (MCNPX simulation: Geant4
similar)

Function is b
2e

a
E+b−e2 with a = −1238.91, b = 141.713

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 19 / 27

Example 2
Data from simulations by Tim Fulcher

Distal shape of Bragg peak (Y80 − Y20) as function of beam energy E and
initial energy spread P

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 20 / 27

Example 2
Data from simulations by Tim Fulcher

Distal shape of Bragg peak (Y80 − Y20) as function of beam energy E and
initial energy spread P

Function is a2 E(E−1)+e2b

E+P with a = 0.145241, b = 6.28564
Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 20 / 27

Example 3
Number of spallation neutrons as function of beam energy, target radius and length

Function is Ec(a + Elog(LR) ∗ (c − b c
1

log(E)
(d−(2+(b−aE+L+b)))

) with

a = −0.56, b = 192.4, c = −2.017.d = 156.9

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 21 / 27

Example 3

That’s for 1000 generations, took about a day

Achieves score 5618 - ideal would be 5880 - so more improvement possible

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 22 / 27

Example 4
Where do they come from?

Spallation neutrons come from near end of target, side, or far end
Fit fractions. near/total and side/total as functions of energy, target
radius, target length
Resulting functions too horrible to transcribe...

(Not perfect, but this is just 1 of 42 plots)

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 23 / 27

Example 4

Here are 4 more

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 24 / 27

Frankenstein - A hybrid of numeric & biological techniques
https://github.com/RogerJBarlow/Frankenstein

#include "Frankenstein.h"

void main(){
Frankenstein f(20,1,{1,2},{&Exp,&sin},{&add,&sub,&mul,&div},2);
f.setProbabilities(2.0,0.1,0.1,.1,.1);

f.givederivatives({&Exp,&cos},{&addD,&subD,&mulD,&divD});
f.forPrinting({"x","1","2","a","b","exp","sin","+","-","*","/"});
double X[] = {1,2,3,4,5,6,7,8,9,10};
double N[]= { .4,1.7,4.0,6.8,10.0,13.2,16.3,18.,21.,23.};
for(int j=0;j<10;j++) f.addtarget(N[j],vector<double> {X[j]});
#pragma omp parallel for

for (int itry=0; itry<24;itry++){
biology G(f,itry);

G.populate(1000);

for (int i=0;i<=500;i++) G.mutate();

cout<<"CORE "<<itry<<" best " << *(G.pop[G.ibest])

<<" score "<<G.bestscore<<" parameters ";

for(int iii=0;iii<G.Nmin;iii++)

cout<<G.pop[G.ibest]->pmin[iii]<<" ";

cout<<endl;

} // end of cores loop

} // end of main program

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 25 / 27

Differences
Between FRANKENSTEIN and GeneXProTools, the industry standard

Plus points

1 Incorporates numerical minimisation

2 Open Source and free to download

Minus points

1 No triadic functions (if A then B else C...)

2 Single genes as opposed to multi-gene chromosomes

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 26 / 27

More to explore

Adaptive strategy - change tuning parameters as evolution progresses?

Recognise lack of biodiversity and take action?

Recognise lack of progress and take action? (Asteroid strike)

Restrictive strategy - insist programs contain all variables and adjustable
parameters?

Should we try and shorten programs?

Gain experience

Bring me your data and we’ll fit it!

Roger Barlow (Huddersfield) Gene Expression Programming November 7th, 2019 27 / 27

