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Probability, Likelihood, Confidence - What do they mean?
In normal use - pretty much the same thing

Science has adopted everyday
words (like ‘work’, ‘energy’,
‘charge’) and given them exact
definitions.

The same thing happens here.
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Probability: two definitions

Frequentist
If NA is the number of times A
occurs out of an ensemble (or
collective) of N trials, then P, the
probability of A, is the limit of NA

N
as N →∞

Bayesian
Degree of belief. If P is the
probability of event A, you will
accept a bet on A occurring in a
trial if you are offered odds of
1− P to P or better.

Both satisfy the Kolmogorov Axioms: Mathematical Probability.
Both agree with experience with coins, dice, cards, roulette wheels etc.
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Frequentist Probability
Important feature

The Probability of A depends on the ensemble being considered.

Example: German life insurance companies find they pay out on 1.1% of
their 40 year old male clients. (hard numbers: 940 in 85,020).
Your friend Hans is celebrating his 40th birthday.
The probability he will celebrate his 41st is 98.9%
But he does not smoke or drink. For that sample the numbers are (maybe)
198 in 30,120 giving a probability 99.2%
To celebrate his 40th birthday he has bought a motorbike! For that sample
the numbers are (maybe) 73 in 5674 giving 98.7%
All these answers are correct.

Probability is a joint property of the event and the ensemble, and there
may be more than one possible ensemble
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Another example

A muon is produced in a collision.
What is the probability it will be
correctly identified by the PID?

Calculate using Monte Carlo or tag-and-probe. Take many events, and
count how many muons are identified. You will get different results for:

All muons generated

High PT muons

Muons from B hadron decays

Muons for which the track is reconstructed

Muons in your specific η region

All are equally valid. The muon does not have a ‘probability of being
identified’ in its own right.
This is a bit of a conceptual glitch, as coins, dice, cards etc do have this
property
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What if there is no ensemble?

Obviously, if an event is unique there is no ensemble and there can be no
probability.
What is the probability that the gluino exists and has a mass below 1 TeV?

This is a non-question. Either it does or it doesn’t. The probability is
either 1 or 0.
What is the probability that it will rain here tomorrow?
This is a non-question. Either it does or it doesn’t. The probability is
either 1 or 0.
Technically this is correct. But not helpful.
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From probability to confidence

The probability of rain tomorrow is either 0 or 1

Suppose some weather forecast predicts rain
You check the past accuracy of these forecasts and
ascertain that they are right (say) 8 times out of 10.

You can’t say ”There is an 80% chance of rain tomorrow”

You can say ”The statement ‘It will rain tomorrow’ has an 80% chance of
being true.”
This is not a statement about the rain, but about the forecast as a

member of an ensemble of forecasts. You say “It will rain tomorrow” with
80% confidence

Note 1: There may be different ensembles. Perhaps the track record is
90% for forecasts of rain.
Note 2: Or the forecaster may say ‘Looking at conditions lie today, rain
fell in 80% of cases.’ Or they ran many simulations and 80% gave rain.....

Roger Barlow (LHCb-UK Student Talks) Probability, Likelihood and Confidence 20th February 2020 8 / 32



From probability to confidence

The probability of rain tomorrow is either 0 or 1
Suppose some weather forecast predicts rain

You check the past accuracy of these forecasts and
ascertain that they are right (say) 8 times out of 10.

You can’t say ”There is an 80% chance of rain tomorrow”

You can say ”The statement ‘It will rain tomorrow’ has an 80% chance of
being true.”
This is not a statement about the rain, but about the forecast as a

member of an ensemble of forecasts. You say “It will rain tomorrow” with
80% confidence

Note 1: There may be different ensembles. Perhaps the track record is
90% for forecasts of rain.
Note 2: Or the forecaster may say ‘Looking at conditions lie today, rain
fell in 80% of cases.’ Or they ran many simulations and 80% gave rain.....

Roger Barlow (LHCb-UK Student Talks) Probability, Likelihood and Confidence 20th February 2020 8 / 32



From probability to confidence

The probability of rain tomorrow is either 0 or 1
Suppose some weather forecast predicts rain
You check the past accuracy of these forecasts and
ascertain that they are right (say) 8 times out of 10.

You can’t say ”There is an 80% chance of rain tomorrow”

You can say ”The statement ‘It will rain tomorrow’ has an 80% chance of
being true.”
This is not a statement about the rain, but about the forecast as a

member of an ensemble of forecasts. You say “It will rain tomorrow” with
80% confidence

Note 1: There may be different ensembles. Perhaps the track record is
90% for forecasts of rain.
Note 2: Or the forecaster may say ‘Looking at conditions lie today, rain
fell in 80% of cases.’ Or they ran many simulations and 80% gave rain.....

Roger Barlow (LHCb-UK Student Talks) Probability, Likelihood and Confidence 20th February 2020 8 / 32



Confidence

Definition

Confidence: A statement is true at confidence CL if it is a member of an
ensemble of statements of which at least CL are true

Reasons for that ’at least’

Higher CL statements embrace lower. If a statement is true at 99%
CL it is true at 95% CL

If you want to make a statement at some CL but no ensemble has
that value, you go for the next one up

When dealing with composite models it tells you to deal with extra
parameters by considering the worst case
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Confidence and measurement

What does the measurement ‘x = 100± 10’ mean?

Not ‘there is a 68% probability that x lies between 90 and 110’

x has been measured with some device which gives a result distributed
about the true value according to a Gaussian distribution with standard
deviation 10

‘ x lies between 90 and 110, with 68% confidence’

If you go through life and whenever you see a measurement you assume
the true values lies within the error, you will be right (at least) 68% of the
time – and wrong (up to) 32% of the time..
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Confidence regions

You have a choice about what CL to use. 68% or 90% or 95% or....
You also have a choice about how to choose the limits.

Equidistant

Central (Equal probability)

Shortest length

Lower Limit

Upper Limit
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Confidence Bands (or belts)
More subtle: a proportional Gaussian

You measure x = 100 with some device which has an error of 10%
Could be from a true value of 90, a 1.1 σ upward fluctuation
Could be from a true value of 110, a 0.9 σ downward fluctuation

Construct Horizontally: for each true value
a construct the desired confidence region -
here 68% central
The probability that a measurement will lie
in the band is 68%
Take the measurement - get a value of x
The probability that a measurement will lie
in the band is 68%
Read Vertically: upper and low limits for a
here are 90.9 and 111.1 .

‘a lies between 90.9 and 111.1, with 68% confidence’
Note that the lower limit for a comes from the upper limit line, and vice
versa. Makes sense if you think about it.
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More Complicated: Poisson

P(r ; a) = e−a a
r

r ! Similar to previous example as standard
deviation increases with true value

Different in that observable is discrete
(0,1,2,3...) rather than continuous

Need to invoke the ‘at least’ in the
definition of confidence. Want at most 5%
above and below the band

Example: consider a = 3.9. Want to construct probability 0.05
P(0; 3.9) = 0.020: OK
But adding P(1; 3.9) = 0.079 would take it over the limit.
Only at a = 4.744 do we get P(0) + P(1) = 0.0087 + 0.0413 = 0.05

This line is interesting/important as it is also the 95% upper limit
Breaks at a=2.996,4.744,6.296,7.754,9.153...
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Coverage
Much discussed

Probability - as function of a - that a measurement will give a result for
which the constructed confidence interval includes a
Here for 95% Poisson upper limit
Should never undercover: go below desired CL (here 0.95)
Is allowed to overcover: go above desired CL, though this is inefficient
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Bayesian Probability

Advantage: no restriction on topics: rain tomorrow, existence of gluino,
whatever... are all valid topics

Disadvantage: no reason why my P(A) and your P(A) should be the same.

Hence also known as ‘Subjective Probability’
Makes great use of Bayes’ Theorem

Theorem (Bayes’ Theorem)

P(A|B) = P(B|A)
P(B) P(A)

Actually applies to Frequentist probability too

Proof.

P(A|B)P(B) = P(A&B) = P(B|A)P(A)
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Bayes’ Theorem - general

Example (Trivial)

A card is drawn from a pack. It is black. What is the probability it is the
ace of spades?
P(A♠|black) = P(black|A♠)

P(black) P(A♠) = 1
1/2 ×

1
52 = 1

26

Example (More useful)

A beam which is 90% π+ and 10% K+ passes through a Cherenkov
counter which has a 95% chance of producing a signal for a π+ and 2%
for a K+. If some particle gives no signal, what is the probability that it is
a K+?
P(K+|nosignal) = P(nosignal |K+)

P(nosignal) P(K+) = 0.98
0.1×0.98+0.9×0.05 × 0.1 = 68.5%

Lemma

P(B) = P(B|A)× P(A) + P(B|A)× (1− P(A))
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Bayes’ Theorem - Bayesian

P(Theory |Data) =
P(Data|Theory)

P(Data)
× P(Theory)

Why is this Bayesian and not Frequentist?

Because in Frequentist
Probability there is no such thing as P(Theory) let alone P(Theory |Data)

In Bayesian Probability they are known as your Prior and Posterior belief.

Behaves sensibly: observation of data that the theory say are likely boosts
your belief in the theory, though this is moderated by the probability it
could happen anyway. Likewise if P(Data|Theory) is small or zero, so is
P(Theory |Data).
We use this all the time in our daily lives, making life decisions based on
posterior beliefs and reward/penalty functions.
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Priors and Posteriors - from numbers to distributions

Generalise from ’the probability that the gluino exists and has a mass below
1 TeV’ to ‘the probability distribution function for the gluino mass’ P(Mg̃ )

Then in the light of some data (which presumably is not in agreement
with light Mg̃ but is compatible with heavier values) you get a posterior

P(Mg̃ |Data) =
P(Data|Mg̃ )
P(Data) P(Mg̃ )

Notice that the denominator does not contain Mg̃ so it is easier to write
P(Mg̃ |Data) ∝ P(Data|Mg̃ )P(Mg̃ )
and normalise (to 1, or, strictly, to your overall belief that Mg̃ is
somewhere)
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Posteriors and Priors

Replace specific Mg̃ by general a, and data by x (or, if integers, r)

Sometimes prior cannot be integrated (“improper”). Example: a uniform
from 0 to infinity.....

Don’t worry, normalising the posterior takes care of that
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Posteriors depend on Priors

Shows posteriors from 3 measurements. 3± 0.5, 4± 1, 5± 2
Red curves are from a prior flat in a (which is often plausible)
Blue curves are from a prior flat in ln a (which is often plausible)
Bernstein-von Mises theorem says that if you have lots of data the
posterior is independent of the prior. But we do not usually have this
luxury - certainly in interesting cases.

Making a virtue out of ignorance: ‘I know nothing so I take a prior uniform
in a ’ is dishonest. Uniform in a is not uniform in ln a or cos a or

√
a or ...
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Credible Intervals

Bayesians do not need all the confidence apparatus

From the posterior distribution can say ’The probability that a lies in the
region is 68%’, or whatever.

Call these ‘credible intervals’: look like confidence regions but are subtly
different

Same freedom of choice about the number to quote and the region
(central, shortest, upper limit, lower limit...)

Coverage is in principle irrelevant for Bayesians - undercoverage is not
illegal - but it has proved an interesting thing to study
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The Likelihood

Has already appeared as P(Data|Theory)
Probability of a data sample: L(x1, x2....|a) =

∏
i P(xi |a)

Use in Fisher information, Minimum Variance Bound, expectation values
for a sample... including Maximum Likelihood Estimation

L(data|a) does not tell you the probability of a particular value for a
Bayesian: Because you need to multiply it by the prior.
Frequentist: because the ‘probability of a’ is meaningless
Example: single Poisson measurement

P(r ; a) = e−a a
r

r ! = L(a; r)
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The Likelihood Principle

Says that all the information about an experimental result is contained in
the likelihood function L(a|data)

Sounds plausible

But standard Frequentist interpretations of results break this as they also
include outcomes of experiments that didn’t happen

So not so plausible

However, publishing the complete likelihood function (as opposed to just
peak value and + - errors) is a good thing
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The Upper Limit problem - I

You are searching for a new particle (or decay mode, or ...)
You see r events. What can you say - specifically if r = 0?

Frequentist.
If the true value is ahi or more,
the probability of getting r
events or less is∑r

0 e
−ahi a

r
hi
r ! = 0.05

If r = 0, ahi = 2.996: the true
value is at most 2.996,with
95% confidence

Bayesian
Use likelihood to construct the 95%
credible interval

∫ ahi
0 e−a a

r

r ! da = 0.95
Integration by parts gives[
−e−a arr !

]ahi
0

+
∫ ahi

0 e−a ar−1

(r−1)! da = 0.95

Repetition gives
∑r

0 e
−ahi a

r
hi
r ! = 0.05

Same as Frequentist formula!
If r = 0, ahi = 2.996: the true value is
at most 2.996,with 95% probability

Agreement is a fortunate co-incidence

From the statement about r , obtain statements about cross-section,
branching ratio, mass or whatever.
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The Upper Limit problem - II

Suppose there is also a known background B

Example (1 Straightforward)

B = 1.2, observe 4 events
Upper limit 9.2 on NT = NS + NB at 95% confidence/probability
So upper limit 8.0 on S

Example (2 Suspicious)

B = 1.2, observe 0 events
Upper limit 3.0 on NT = NS + NB at 95% confidence/probability
So upper limit 1.8 on S

Example (3 Crazy)

B = 3.2, observe 0 events
Upper limit 3.0 on NT = NS + NB at 95% confidence/probability
So upper limit -0.2 on S
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Straightforward approaches

What’s happening? In cases (2) and (3) there is clearly a downward
fluctuation in the background. But there is no way to fold that knowledge
into the standard Frequentist analysis.

Ultra-strict frequentist: publish non-physical upper limit
Justification: There will be upward and downward fluctuations. This
happens to be a downward fluctuation. If we suppress it, that will bias the
published results.

Or just go Bayesian. Prior for S which is zero for negative S . Tempting.
(Though you should still check for robustness under different priors)

But there are ways through this. Feldman-Cousins and CLs

Roger Barlow (LHCb-UK Student Talks) Probability, Likelihood and Confidence 20th February 2020 26 / 32



The Feldman-Cousins unified method
Works by attacking a somewhat different problem

Suppose you observe r events with expected background B
If r >> B you will want to publish a 2-sided measurement

Example

You observe 25 events with a background of 1.2, you report a
measurement of 23.8± 5.0 events

If r ∼ B you will want to publish an upper limit

Example

You observe 4 events with a background of 1.2, you report an upper limit
of 8.0 signal events, at 95% confidence. (Example (1) on previous slide)

‘Flip-flopping’. Transition point will
depend on plausibility. But it’s
somewhere.
You’ve broken your confidence band
diagram.Roger Barlow (LHCb-UK Student Talks) Probability, Likelihood and Confidence 20th February 2020 27 / 32



Feldman-Cousins Method

Plot r horizontally as before, but S vertically. So different B → different
plot. Probability values P(r ; S) = e−(S+B) (S+B)r

r !

For any S have to define region R such that
∑

rεR P(r ; S) ≥ 95%.

First suggestion: rank r by probability and take them in order (would give
shortest interval). Drawback: outcomes with r << B will have small
probabilities and all S will get excluded. But such events happen - want to
say something constructive, not just ‘This was unlikely’

Better suggestion: For each r ,
compare P(r ;S) with the largest
possible value obtained by varying S .
This is either at S = r −B (if r ≥ B)
or 0 (if r ≤ B ) Rank on the ratio
Valid confidence belt. Flip-flop smooth. Limit always sensible.
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CLS

CLs+b: Probability of getting a result
this small (or less) from s + b events.
Same as strict frequentist.

CLb: CLs+b for s = 0 - no signal,
just background

CLs = CLs+b

CLs

Apply as if confidence level 1− CLs
Result larger than strict frequentist (’conservative’) (’over-covers’)
In this example 8.61 for s + b, s = 8.61− 3.40 = 5.21
As opposed to strict frequentist s = 7.75− 3.40 = 4.35
CLs is neither frequentist nor Bayesian,. But it gives sensible numbers and
is widely used in Particle Physics. But has no sound statistical foundation.
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Extension: beyond simple counting

There’s typically a lot more information in an event that just its existence:
masses, submasses, b-quark tagging probabilities, NN outputs....
You also may want to combine results from several channels. And different
experiments.
Tools were developed during (especially) the Higgs search at LEP
A simple accept/reject criterion does not make full use of that information
Define some test statistic Q and replace Poisson formula by some P(Q|a)
Usual choice the Likelihood Ratio Q = L({x}|a)/L({x}|0)
for N Channels/experiments

Q =

∏N
i=1 e

−(si+bi ) (si+bi )
n
i

ni !

∏ni
j=1

siSi (xij )+biBi (xij )
si+bi∏N

i=1
e−bi b

ni
i

ni !

∏ni
j=1 Bi (xij)

with known si (a)

Bonus: −2 lnQ behaves (roughly) like χ2 (Wilks’ theorem)
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Putting it all together

Scan the parameter of interest (e.g. MH). Calculate the number(s) of
expected events si (MH). Will depend on cross section and on efficiency.
The S function depends on MH . The B functions and the bi background
numbers will also, if your analysis strategy adapts.
Calculate Q as a function of MH ,and the equivalent CLS or whatever
Can establish a limit, at a given confidence level, or can calculate the
p−value for the SM prediction

Also simulate what you’d expect to see with no signal (dotted line) and
spread (green and yellow bands), using Monte Carlo
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Aside: the difference between a bison and a boson

An experimenter
measures the masses of
a sample of bison. They
plot the results in a
histogram

An experimenter
measures the masses of
a sample of bosons.
They plot the results in
a histogram

Histograms look the same (apart from units etc.) but are different.
The spread in the bison histogram is due to the different bison masses.
The spread in the boson histogram is due to measurement uncertainties.
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