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The problem

Fitting a function to data which
share a systematic error within
experiments. (Or data-taking runs.
Or tracker-modules. Or...)

Ignoring systematics gives wrong
answer (dashed line)
Need to include them for correct
(dotted) line

The puzzle

There are two different ways to do it. Which should you use?
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The Question
Which of two Methods should you use?

Using i , j ... to index the data and r to index the experiments
a represents the fitting parameters
Individual measurement errors σi and systematic errors Sr

Invert the Covariance matrix

Adjust a to minimise χ2

∑
i ,j(yi−f (xi , a))V−1

ij (yj−f (xj , a))

Vij = δijσ
2
i + δri rjS

2
ri

Need to invert a (very) large
matrix

Introduce and fit deviations zr

Adjust a and z to minimise χ2

∑
r

∑
i∈r

(
yi−f (xi ,a)−zr

σi

)2
+
(

zr
Sr

)2

Minimisation space has (several)
extra parameters

The answer

It doesn’t matter. They are equivalent
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Inverting the matrix

σ2
1 + S2

1 S2
1 S2

1 S2
1 0 0 0 . . .

S2
1 σ2

2 + S2
1 S2

1 S2
1 0 0 0 . . .

S2
1 S2

1 σ2
3 + S2

1 S2
1 0 0 0 . . .

S2
1 S2

1 S2
1 σ2

4 + S2
1 0 0 0 . . .

0 0 0 0 σ2
5 + S2

2 S2
2 S2

2 . . .
0 0 0 0 S2

2 σ2
6 + S2

2 S2
2 . . .

0 0 0 0 S2
2 S2

2 σ2
7 + S2

2 . . .
...

...
...

...
...

...
...


V is block diagonal, diag{v1, v2, v3.., } so V−1 is also block diagonal
diag{v−1

1 , v−1
2 , v−1

3 .., }

Consider case where all σi the same v = σ2I + S2U
U is matrix of ones. Note U2 = nU
v−1 = 1

σ2 I− S2

σ2(σ2+nS2)
U

Now generalise v−1
ij =

δij
σ2
i

+ S2
r

1+
∑

k∈Er

S2
r
σ2
k

1
σ2
i σ

2
j

Minimise χ2 =
∑

r

∑
i∈Er

∆2
i

σ2
i
−
∑

r
S2
r

1+
∑

k∈Er

S2
r
σ2
k

∑
i∈Er

∑
j∈Er

∆i∆j

σ2
i σ

2
j

Roger Barlow (Group Meeting) Combining Datasets 17th December 2020 4 / 10



Fitting the extra parameters

Minimise χ2 =
∑

r

∑
i∈Er

(
∆i−zr
σi

)2
+
(

zr
Sr

)2

∂χ2

∂zr
= 0 = −2

∑
i∈Er

∆i−zr
σ2
i

+ 2 zr
S2
r

zr =
∑

j∈Er
∆j/σ

2
j

1/S2
r +

∑
k∈Er

1

σ2
k

Put these back into the expression for χ2 and get

∑
r

∑
i∈r


∆i−

∑
j∈Er

∆j/σ
2
j

1/S2
r +

∑
k∈Er

1
σ2
k

σi


2

+ S2
r

∑
j∈Er

∆j/σ
2
j

1+
∑

k∈Er

S2
r
σ2
k

2

Multiply out and collect terms in ∆2
i and ∆i∆j and get∑

r

∑
i∈Er

∆2
i

σ2
i
−
∑

r
S2
r

1+
∑

k∈Er

S2
r
σ2
k

∑
i∈Er

∑
j∈Er

∆i∆j

σ2
i σ

2
j

We’ve seen that before

Roger Barlow (Group Meeting) Combining Datasets 17th December 2020 5 / 10



The two methods are equivalent

Maybe surprising. Maybe obvious.

Which to choose?

Doesn’t matter.
Second method gives offsets, which may or may not be useful.
First method gives direct (non-iterative) solution for linear function.
Minimisation in second method requires care as there is a direction in
parameter space adjusting c and all the zr with small χ2 dependence
(Rosenbrock’s Valley). Scrutinise ‘solutions’ from minimiser, or solve for zr
as you go.
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Multiplicative Systematics

More common. Experiments have uncertainty in efficiency, or luminosity...

Matrix Vij = δijσ
2
i + ξ2

r yiyj
where ξr is shared fractional error

Or can minimise values scaled by zr , and add
(
zr−1
ξr

)2
to χ2

Ambiguity: do we scale yi or f (xi )?

Scaling the yi gives the same results as the matrix inversion (similar
algebra to last time)

But this has a problem...

Roger Barlow (Group Meeting) Combining Datasets 17th December 2020 7 / 10



”D’Agostini Bias”
Combining correlated results gives a biassed result

Simple illustration

Two measurements x1, x2 of the same quantity a with a shared error ξ

V =

(
σ2

1 + ξ2x2
1 ξ2x1x2

ξ2x1x2 σ2
2 + ξ2x2

2

)

χ2 ∝ (x1 − a, x2 − a)

(
σ2

2 + ξ2x2
2 −ξ2x1x2

−ξ2x1x2 σ2
1 + ξ2x2

1

)(
x1 − a
x2 − a

)
â =

σ2
2x1 + σ2

1x2

σ2
1 + σ2

2 + ξ2(x1 − x2)2

〈â〉 < a

Bias is not due to correlation - but to multiplicative errors
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Sorted

Simple question

How should you average 90± 10% and 110± 10%?

If you apply the zr to the fi (or use Vij = ξ2
r f (xi )f (xj)) the bias is removed.

Toy MC results of averaging 2 correlated values using ξ2yiyj (LEFT) and
ξ2fi fj (RIGHT)
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Conclusions
Nucl. Instrum. and Meth. A987 164864 (2021) ,arXiv:1701.03701

You can use either obvious method for combining datasets

D’Agostini bias can be avoided, rather than corrected for

Two early Christmas presents
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