
Merlin++
A flexible and feature-rich library for accelerator simulations

Roger Barlow
Sam Tygier and Scott Rowan

The University of Huddersfield

13th November 2020

Roger Barlow (Huddersfield) Merlin++ 13th November 2020 1 / 17



What it’s all about

What is Merlin++?

A short history
Some examples
Where Merlin belongs

The big picture

A library not a program
A truly Object Oriented program
Using the C++ compiler
Writing solid software

Performance and Features

Getting started

Roger Barlow (Huddersfield) Merlin++ 13th November 2020 2 / 17



What it’s all about
A short history

History of Merlin++, formerly Merlin,

First developed at DESY, circa 2000, by Nick Walker for ILC studies

Extended by Andy Wolski to include linac and damping rings

Added Twiss parameter calculations and symplectic integrators

More features including wakefields, collimation and synchrotron radiation

Handed on to Manchester/Huddersfield in 2009

Developed including advanced scattering models and Hollow Electron
Lens for LHC and HL-LHC collimation studies

Tidied up and renamed Merlin++

Roger Barlow (Huddersfield) Merlin++ 13th November 2020 3 / 17



What it’s all about
Some examples

Particles in the LHC collimators

β functions around ATLAS from
MAD and Merlin

Beam hitting the edge of a collimator

Beam through a copper slab:
Comparison with 2xGeant4

Roger Barlow (Huddersfield) Merlin++ 13th November 2020 4 / 17



What it’s all about
Some more examples

Sextupole at the end of a FODO
lattice

Losses in the LHC

Roger Barlow (Huddersfield) Merlin++ 13th November 2020 5 / 17



What it’s all about
Merlin, MAD and others

MAD

Many more features

Geant4

Does not do detailed collisions and cascades
Does do beam optics and particle bunches – and much faster

FLUKA

Same as Geant4

SixTrack

Similar purpose – but cleaner

All the rest

Merlin++ is general purpose, specific aspects can be added

Roger Barlow (Huddersfield) Merlin++ 13th November 2020 6 / 17



The big picture
Why Merlin++ is a library, not a stand-alone not a program

For
No need to write parser

Full flexibility of C++ language

User can do what they want with
results. Developer does not have to
anticipate

User can easily add their own classes

Against
Have to compile program

User can do stupid things

For the user

a library rather than a stand-alone program brings power and responsibility

A lot more power

and only a little more responsibility
Roger Barlow (Huddersfield) Merlin++ 13th November 2020 7 / 17



The big picture
A full Object Oriented design

Accelerator (or beamline) comprises many components

Magnets (dipoles, quads, sextupoles), drifts, collimators...

Also applies to: particle distributions, trackers, scattering models ...

C-style solution

enumeration and switch

C++ solution

Inheritance: a quad is a magnet which is a component, and a particle is
transported through it by its own member function

Extending Functionality

Makes it easy for the user to include a new process
Add child class with new feature - no need to change the core of Merlin++
If useful, can add to the library for other users

Roger Barlow (Huddersfield) Merlin++ 13th November 2020 8 / 17



The big picture
Using new C++ features

You can write FORTRAN programs in any language

Writing C++ code involves a continual battle not to write in C
Design philosophy from the start was to use not just inheritance but all
features of C++, e.g. Templates
Continue this philosophy as C++ develops (C++11, 14, 17...)
Some features of Merlin got included in later C++ versions. Discard and
adapt new ones

Random Numbers

Nick wrote Merlin with its own random number generator, as the standard
that came with C++ at the time wasn’t good enough for long-cycle
simulations.
C++11 included a proper Mersenne Twister random number generator
So we use it, and drop the old one

For Merlin++, backwards compatibility is not an argument
Roger Barlow (Huddersfield) Merlin++ 13th November 2020 9 / 17



The big picture
Writing high qualitycode

Good code is fast, usable and sustainable – code quality can be measured!
With help of CS colleagues (Colin Venters’ group) , analysed Merlin
Scott Rowan et al, Sustainability of the Merlin++ particle tracking code,
CHEP2018 https://doi.org/10.1051/epjconf/201921405028

Criteria e.g. from UK Software
Sustainability Institute
Some are just tickboxes: licensing
Some use tools: github, uncrustify,
doxygen, cmake tests
Some are providing material:
website, tutorials, documentation
Some are more profound
e.g. meaningful names
(PointInside() became
CheckWithinApertureBoundaries())

Roger Barlow (Huddersfield) Merlin++ 13th November 2020 10 / 17



Cleaning up the code

McCabe value: measures complexity
(e.g. lots of if and switch

statements means complex (=hard
to read) code). Measured by
Metriculator package
Cleaning up code also improves
speed, through improving look-ahead
(measured by valgrind)

The bad guys:

Long Methods, Large Classes, Long Parameter Lists, Switch Statements,
Alternative Classes With Different Interfaces, Parallel Inheritance
Hierarchies, Duplicate Code, Dead code and Middle Man classes

Roger Barlow (Huddersfield) Merlin++ 13th November 2020 11 / 17



Cleaning up the code - decoupling

Use ArchDiaDV8 tool to measure
Propagation Cost (if you change one
thing, how much elzse needs
changing?) and Decoupling Level
(are code modules independent?)

Overall figures generally good. Looking at history: got a lot better, then
gradually worse, then better again thanks to Scott’s clean-up efforts.

Not just cosmetic: changes also
increase speed

Roger Barlow (Huddersfield) Merlin++ 13th November 2020 12 / 17



Implemented on

linux (obviously). Ubuntu and Centos

Windows because some people do use it

MacOS because laptops can be useful as well as beautiful

Raspberry Pi just because we can

HTC condor for high-volume work. Random number seeding needed

Testing it on different architectures and operating systems has brought
odd issues to light, and forced us to conform to standards

Runs standalone or from Eclipse

Roger Barlow (Huddersfield) Merlin++ 13th November 2020 13 / 17



Physics Features

Scattering: various models including the ‘Practical Pomeron’
implementation for elastic and diffractive scattering

Synchrotron radiation - from a cooling point of view. Doesn’t track
the SR photons, though it could

Spin tracking - havn’t tested this but it’s there

High-order wakefields - geometric and resistive, for circular beampipes

Hollow Electron Lens - Haroon Rafique’s thesis

Heavy Ions - Sam Tygier working on this for RHIC

Roger Barlow (Huddersfield) Merlin++ 13th November 2020 14 / 17



Performance

For a collimation study (horizontal halo) with scattering

Tracking 10,000 particles for 10 LHC turns takes 110 secs on a
desktop

Tracking 1,000,000 particles for 100 LHC turns takes 13782 seconds
(∼ 4 hours)

Can use multiple cores with openmp (results shown for 16-core Xeon)

Roger Barlow (Huddersfield) Merlin++ 13th November 2020 15 / 17



Getting started and keeping going

(1) Read the paper, arXiv
2011.04345. Tells you enough about
Merlin++ to decide whether it’s
going to be useful for you

(2) Go to the website.
http://merlinpp.org

(3) Click on’ Quickstart guide’ and
’Installation’ and follow instructions

(4) Try the tutorials, then start
writing your own code - either from
scratch or by adapting one of the
examples.

Roger Barlow (Huddersfield) Merlin++ 13th November 2020 16 / 17



Finally

We have come through a fairly major re-write and clean-up of Merlin++,
now we want to widen the user base

So do give it a try...

and get in touch

Roger Barlow (Huddersfield) Merlin++ 13th November 2020 17 / 17


