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Why do we quote systematic errors separately?

Results are always given like

In conclusion, we have measured m = 12.1 & 0.3 = 0.4 , where the first
error is statistical and the second is systematic

Or even '+ statistical, tsystematic, +luminosity uncertainty, +theory
uncertainty, tbranching ratio uncertainty’

Why quote them separately?
Why not just 12.1 4+ 0.57

Minor reason - shows whether result is statistics limited
Major reason - to enable combination of this result with others that share
a systematic uncertainty
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Combination of Errors

What is the error on f(x,y)

For undergraduates

For graduates

2 _ (9N 2, (OF) 240, (2F) (OF
7= \ox) 7 Jy %y TP\ ax dy Ix%y

If there are several functions and several variables this generalises to

V; = GV,G (1)

_ ) of;
where V¢ and V, are the covariance matrices and G;; = I
1
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Example - the straight line fit

y=mx+c
m = @ X%’ Z(X/ 7)2 i ; J—
x2—X N(x2—x2) X R
VX% CoxX)yi -
Cc = Y— mx —= X27y_i2Xy o Z(X;XL);)y' ER i
x2—X N(x2—x2)
Vy =2l

Equation 1 gives the usual errors, and also the correlation:
_ o2 _ 02; _ Xo2 _ X
e R T Ry e B

Note 1: Even though the y; are independent, m and c¢ are correlated
Note 2: Correlation vanishes if x = 0. Or write y = m(x — X) + ¢’
Note 3: in this example,

m = 0.105+ 0.011, c = 0.983 £ 0.068, p = —0.886
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Example - the straight line fit

Continued

Extrapolation of a straight line - what is y at x = 207

y =0.983 + 20 x 0.105
Error from 1/0.0682 + 202 x 0.0112 = 0.23 Wrong

Correct Error from
1/0.0682 + 202 x 0.0112 — 2 x 0.886 x 20 x 0.068 x 0.011 = 0.16
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Building a correlation matrix

or covariance matrix, or variance matrix...

Matrix element Vj = ((x — (x))(g — () = bxg) — b ()

Given correlated x; and x2, model as x; = y1 + z,x2 = y» + z, where
¥1, 2, z independent with errors 01,05, S.

Vit = (1 + 2)n + 2)) — (1 +2))* = 03 + S,
V5o similar

Vi = Vor = (1 + 2)(y2 + 2)) — (11 + 2)) (2 + 2)) = S?
2 2 2
V (0’1 +S ) >

2 o2+ 52

For more variables, build up larger matrix where off-diagonal elements
come from shared features, on-diagonal gives total variance.
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Building a correlation matrix

continued

Suppose experiment A measures y; and y» with shared systematic
uncertainty Sa, and experiment B measures y3 and y; with shared Sg

c?+53 S 0 0
ve| Si 3+S 0 0
0 0 o3+S53  S3

0 0 S2 02+ SE

Similar for (more common) shared multiplicative uncertainty - (e.g.
efficiency, luminosity, normalisation...)
y1 £o1£ 51 and y» £ 02 £ 5 with 51 = §y1, 5 = €y

V— O'% + 512 515
515 J% +522

PDG, HFLAV and similar groups do this on an industrial scale
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Using the matrix

Independent measurements

y—if(x))2

gj

Maximum Likelihood — Least Squares — minimise x? = > (

What if the y; are not independent but correlated with non-diagonal
covariance matrix V7
Change to y'. vy = y1, ¥4 = y» + ay; with a such that Cov(yjy5) =0,

etcetera
/o2 0 0

’ . - /*1 _ O ]'/O-é2 0
V'’ diagonal by construction. V'™~ = 0 0 1/07

y' =Ry so V' = [RVIR]! y
Forget about the primed system and get \? = (§ — f)V~1(y — f)
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How does this all link to the Hessian matrix?

&InL
83,-63j

g1 and &> are functions of the data: maximise
InL(a1,a2) =>;InP(x;; a1, a2)

To first order about at’e,

92
88|21L ’a atrue + |n L(a1 _ airue) + 831|33L2 (32 true) 0
88|22L |a atrue + dallgaL2 (é\l true) + 8 |n L( g — true) 0

If unbiassed, <8'”L> [ La'”L dxidxodxs.... = 0. Likewise for a».

6|n L __10L _: : : dln
Differentiating again, and using = {5 gives variance matrix for e

OInLdlnL\ _  /d%InL

6aj (98;( - 8ajaak
Covariance matrix is just inverse of Hessian matrix, approximating
expectation values by actual values.

L

Roger Barlow (Terascale2020) Systematics 2 oth July 2020 9/15



Averaging
BLUE

Given several (correlated) results y;, how do you average them?

Best Linear Unbiased Estimator (L Lyons et al, NIM A270 110 (1988))
Minimise x* = =, ;(vi = )V, (v — 9)

I Vit =V

Write as y = >, wiy; with w; =

Error on y given by vVwVw

Notice that ) ; w; = 1 which is intuitive

Notice that some w; may be negative (if correlations are large) which is
counterintuitve

This assumes the elements of V are known exactly. If not, care needed.

—1
2 Vi
20y Vi

The Poisson trap

What's the average of the 3 Poisson numbers: 8,9,107
Right answer: (8+9+10)/3=9
Wrong answer (1+1+1)/(1/8+1/9+1/10)=8.92
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Equivalent alternative for additive systematics

For n experiments, construct n x n covariance matrix V and minimise x?
Or introduce explicit offsets and drop systematic errors

y{j = yjj + & for value i of experiment j. & Gaussian with mean 0, sd S;,
included in x?

Fit the &; and the parameter(s) a

Downside: n more parameters to fit

Upside (1) avoids matrix inversion

Upside (2): extracts the factors which can be useful to check behaviour
These two methods are actually (surprisingly!) equivalent
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A Fitting Bias for multiplicative systematics

Adjust parameter(s) a to minimise x2 = (§ — f(x; a))V"1(y — f(x; a))
Bias possible if V includes normalising systematic errors:

S; = fy; so increasing value increases error and lowers x?

G. D'Agostini NIM A346 306 (1994)

Indicates separate fit to systematic factors is better
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Nuisance Parameters |

Profile Likelihood - motivation (not very rigorous)

Sprrrprer T

You have a 2D likelihood plot with axes a; and a,. You are interested in a; but
not in ay ('Nuisance parameter’)

Different values of a, give different results (central and errors) for a;

Suppose it is possible to transform to a5(a, a2) so L factorises, like the one on
the right. L(al, 3/2) = L1(31)L2(3/2)

Whatever the value of a}, get same result for a;

So can present this result for a;, independent of anything about a5.

Path of central a5 value as fn of aj, is peak - path is same in both plots

So no need to factorise explicitly: plot L(a1, ;) as fn of a; and read off 1D values.
52(31) is the value of a, which maximises In L for this a;
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Nuisance Parameters 2
Marginalised likelihoods

Instead of profiling, just integrate over as.
Can be very helpful alternative, specially with many nuisance parameters
But be aware - this is strictly Bayesian

Frequentists are not allowed to integrate likelihoods wrt the parameter
| P(x; a) dx is fine, but [ P(x; a) da is off limits

Reparametrising a, (or choosing a different prior) will give different values
for a;. With a bit of luck, even radical changes in the prior for a, will not
effect the frequentist result for a;.

But don't just leave it to luck. Check and make sure.
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Conclusions

Systematic errors can readily be handled - with the help of the correlation
matrix and other techniques
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