Evaluating and reporting systematic uncertainties in flavour physics at the LHC

Roger Barlow The University of Huddersfield

PHYSTAT-Flavour @ CERN (virtually)

19th October 2020

Contents

- Systematics in principle
- Systematics in practice: examples from 4 recent results from ATLAS CMS LHCb
- Summary and conclusions

With acknowledgements and hearty thanks to: Nick Wardle, Bogdan Malescu, Matt Kenzie and Hans Dembinski and apologies for my non-expert descriptions of beautiful analyses

Systematic Uncertainties - or 'nuisance parameters'

A taxonomy

- Continuous uncertainties with explicit consequences. Typical examples: acceptance error, luminosity error.
- Continuous uncertainties with implicit consequences. Typical examples: MC model parameters
- Discrete uncertainties.

Typical examples: choice of MC model (Herwig/Pythia)

May be frequentist (often through an ancillary experiment) or Bayesian Correlations need careful handling (off topic but see backup slides)

Possible confusion

Not the same as checks for inconsistencies/impossibilities.

Warning!!!

Danger of inflation. For errors, "conservative" is another word for "wrong"

What happens when principle meets practice?

Roger Barlow (PHYSTAT2020)

Systematic Errors

ATLAS1: WH and ZH production in the $H \rightarrow b\overline{b}$ channel arXiv:2007.02873v1

Systematic Uncertainties

- (1) Experimental
- (2) Signal Modelling
- (3) Background Modelling

BDTs used for final signal discrimination

Experimental

- b-tagging data/MC correction factors, for various topologies and event properties.. From data using tī samples with t → W(→ ℓν)b decays. 57 separate uncertainties after negligible ones pruned.
- **②** Jet Energy Scale: 30 components. From data using P_T balance with γ or Z or multijet
- Jet Energy Resolution: 8 components, as above. Plus separate uncertainty for b and c jet calibration.
- Lepton id and reco uncertainties small effect.
- E_T^{miss} values and different trigger efficiencies
- **O** Luminosity uncertainty 1.7% from LUCID2
- μ in simulation scaled by 1.03 to improve agreement: uncertainty 0.03 applied.

ATLAS1: continued - signal uncertainties

Table 8: Summary of the systematic uncertainties in the signal modelling. 'PS/UE' indicates parton shower/underlying event. An 'M+S' symbol is used when a shape uncertainty includes a migration effect that allows relative acceptance changes between regions. Instances where an uncertainty is considered independently in different regions are detailed in parenthesis. Where the size of an acceptance systematic uncertainty varies between regions, a range is displayed.

Signal							
Cross-section (scale)	0.7% (qq), 25% (gg)						
$H \rightarrow b\bar{b}$ branching fraction	1.7%						
Scale variations in STXS bins	3.0%–3.9% ($qq \rightarrow WH$), 6.7%–12% ($qq \rightarrow ZH$), 37%–100% ($gg \rightarrow ZH$)						
PS/UE variations in STXS bins	1%-5% for $qq \rightarrow VH$, 5%-20% for $gg \rightarrow ZH$						
PDF+as variations in STXS bins	$1.8\%-2.2\%$ (qq \rightarrow WH), $1.4\%-1.7\%$ (qq \rightarrow ZH), $2.9\%-3.3\%$ (gg \rightarrow ZH)						
mbb from scale variations	M+S $(qq \rightarrow VH, gg \rightarrow ZH)$						
mbb from PS/UE variations	M+S						
m_{bb} from PDF+ α_S variations	M+S						
p_T^V from NLO EW correction	M+S						

STXS = Simplified Template Cross Section. Particular Higgs production mode in particular kinematic region

Ranges given where error varies for different kinematic regions

 $\mathsf{PS}/\mathsf{UE}=\mathsf{parton}\ \mathsf{shower}/\mathsf{underlying}\ \mathsf{event}\ \mathsf{model}\ \mathsf{variations}\ \mathsf{from}\ \mathsf{tuning}\ \mathsf{and}\ \mathsf{Powheg}/\mathsf{Herwig}\ \mathsf{differences}$

M+S Migration+Shape uncertainty

'unless stated otherwise, the uncertainty is taken from the alternative

sample that differs most in shape from the nominal sample'

Like signal uncertainties but more of them (58 listed) Uncertainties in size, shape, and relative acceptance. Backgrounds from: $Z + jets, W+jets, t\bar{t}$, single t, multijets, ZZ, WZ, WWMain ones in fit, others from calculated cross sections

R_{BDT}

Need to look at effect on shape of BDT disciminant. For small Z + HF, single-*t*, *VV* backgrounds just vary by uncertainty and look at input variable variation. For larger W + HF and $t\bar{t}$ use likelihood-free inference (Cranmer et al. arXiv 1506.02169): For p_T^V variation: train another BDT (BDT_S)to discriminate between nominal and alternative sample using all variables *except* p_T^V . Use ratio R_{BDT} of BDT_S/BDT outputs to correct between samples to

see effect of change.

CMS1: $H \rightarrow \gamma \gamma$ properties CMS PAS HIG-19-015

CMS1:continued

Consider several different categories of production (STXS)

9 theoretical uncertainties

QCD scales (multiply and divide by factor ~ 2). ggH and qqH STXS fractions, vary parameters. Include migration effects. PDF and α_s uncertainties use well-established prescription $H \rightarrow \gamma \gamma$ BR 2% uncertainty

16 experimental uncertainties:

Photon energy scale and nonlinearity from $Z \rightarrow e^+e^-$, shower shape corrections, light collection nonuniformity, modelling material, modelling underlying event, luminosity, photon ID, JES and JER, photon energy resolution and efficiency, trigger efficiency, P_T^{miss} resolution, pileup jet ID, lepton ID and isolation, *b* tagging efficiency.

Extracted from data by many ingenious means, or from simulation comparisons.

Roger Barlow (PHYSTAT2020)

CMS1:continued

Different background models (poly, exponential...) give different results. Should include as systematic uncertainty as we don't know the true form Can take rms spread of results of several models.

Smarter alternative: incorporate nature of model as (discrete) nuisance parameter and use in profile likelihood (P. D. Dauncey, M. Kenzie, N. Wardle and G. J. Davies, arXiv:1408.6865v5)

Take the envelope of the likelihood curves. Poor models automatically disqualify themselves. Models with more parameters need a penalty

Roger Barlow (PHYSTAT2020)

Systematic Errors

LHCB1: Study of the $\psi_2(3823)$ and $\chi_{c1}(3872)$ states in $B^+ \rightarrow (J/\psi \pi^+ \pi^-) K^+$ decays JHEP 2008 123 (2020) arXiv:2005.13422

Measure ratios of branching fractions and mass differences

Systematics table for BFs (similar table for mass differences) Signal templates by varying models Polynomial from 1st and 2rd order (using Toy MC) ψ_2 decay using physics-based model

as opposed to phase space, varying unknown interference phase

Table 2: Relative systematic uncertainties (in %) for the ratios of branching fractions \mathcal{R}_{Y}^{X} .

Source	$\mathcal{R}^{\psi_2(3823)}_{\chi_{c1}(3872)}$	$\mathcal{R}^{\psi_2(3823)}_{\psi(2S)}$	$\mathcal{R}_{\psi(2S)}^{\chi_{c1}(3872)}$
Signal and background shapes			
B ⁺ signal template	0.6	0.5	0.1
X _{cc} signal template	0.3	0.2	0.2
Polynomial components	2.5	2.7	0.2
ψ ₂ (3823) decay model	0.2	0.2	
Efficiency corrections	< 0.1	0.2	0.2
Trigger efficiency	1.1	1.1	1.1
Data-simulation agreement	1.0	1.0	1.0
Simulation sample size	0.3	0.4	0.4
Sum in quadrature	3.0	3.2	1.6

Trigger efficiency from MC, corrected by known modes e.g. $B^+ \rightarrow J/\psi K^+$ Data-simulation agreement refers to uncertainty in tracking and PID efficiency corrections.

LHCB1 - continued

Good news

Identification of sources comprehensive and sensible

Bad news

The 'error' is taken from the range - over-conservative and inflationary.

between 270 and 302 keV [2]. The maximal deviations in the ratios \mathcal{R}_Y^X with respect to the baseline fit model are taken as systematic uncertainties for each of the systematic signal model sources. For the systematic uncertainty related to the modelling of the smooth the first to the second order, separately for each fit component and each channel. In each case the ratio \mathcal{R}_Y^X is computed and the maximum difference with respect to the baseline fit model is taken as a corresponding systematic uncertainty. For each choice of the fit is found to be stable. It varies within 0.22% with respect to the efficiency computed for the phase-space model when the unknown phase Φ varies in the range $-\pi \leq \Phi < \pi$.

to $\pm 20\%$ change in the measured efficiency. The resulting variations in the efficiency ratios do not exceed 1%, which is taken as a corresponding systematic uncertainty. The last

ATLAS2: Measurement of ϕ_2 in $B_s^0 \rightarrow J/\psi\phi$ decays arXiv:2001.07115v3

The Results

 $\phi_s = -0.087 \pm 0.036 \text{ (stat.)} \pm 0.019 \text{ (syst.) rad}$ $\Delta\Gamma_s = 0.0641 \pm 0.0043 \text{ (stat.)} \pm 0.0024 \text{ (syst.) ps}^{-1}$ $\Gamma_s = 0.6697 \pm 0.0014 \text{ (stat.)} \pm 0.0015 \text{ (syst.) ps}^{-1}$

The Systematic Uncertainties

Table 5: Summary of systematic uncertainties assigned to the physical parameters of interest.

	ϕ_s	$\Delta\Gamma_s$	Γ_s	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_S$
	[10 ⁻³ rad]	[10 ⁻³ ps ⁻¹]	[10 ⁻³ ps ⁻¹]	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	[10 ⁻³ rad]	[10 ^{-3"} rad]	[10 ⁻³ rad]
Tagging	19	0.4	0.3	0.2	0.2	1.1	17	19	2.3
Acceptance	0.5	< 0.1	< 0.1	1.0	0.8	2.6	33	56	7.0
ID alignment	0.8	0.2	0.5	< 0.1	< 0.1	< 0.1	11	7.2	< 0.1
Best candidate selection	0.5	0.4	0.7	0.5	0.2	0.2	12	17	7.5
Background angles model:									
Choice of fit function	2.5	< 0.1	0.3	1.1	< 0.1	0.6	12	0.9	1.1
Choice of p_T bins	1.3	0.5	< 0.1	0.4	0.5	1.2	1.5	7.2	1.0
Choice of mass interval	0.4	0.1	0.1	0.3	0.3	1.3	4.4	7.4	2.3
Dedicated backgrounds:									
B_d^0	2.3	1.1	< 0.1	0.2	3.0	1.5	10	23	2.1
Λ_b	1.6	0.3	0.2	0.5	1.2	1.8	14	30	0.8
Alternate Δm_s	1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	15	4.0	< 0.1
Fit model:									
Time res. sig frac	1.4	1.1	0.5	0.5	0.6	0.8	12	30	0.4
Time res. p_T bins	0.7	0.5	0.8	0.1	0.1	0.1	2.2	14	0.7
S-wave phase	0.3	< 0.1	< 0.1	< 0.1	< 0.1	0.2	8	15	37
Fit bias	5.7	1.3	1.2	1.3	0.4	1.1	3.3	19	0.3
Total	20	2.2	1.8	2.2	3.4	4.4	51	84	38

ATLAS2: Continued

Flavour Tagging: power-weighted cone charge. Change functions used to parametrise performance.

Largest difference taken as uncertainty.

- Angular Acceptance. Vary binning
- ID misalignment. Vary alignment and study variation in fit parameters
- Trigger efficiency decay time dependence negligible
- One of best candidate in events with more than 1. Try highest p_T rather than lowest χ². Small effect.
- Background model angular form. 14 → 16 order Legendre polynomial and different p_T binning taking largest changes
- Uncertainty in B_d and Λ_b mis-id background modelling
- Let Δm_s float
- 9 Fit model mass (2nd Gaussian) and lifetime change p_T binning.
- **(**) S-wave phase vary $\alpha = 0.51 \pm 0.08$
- Fit bias from consistency checks fitting data from default fit model

CMS2: Search for a narrow resonance in high-mass dilepton final states CMS PAS EXO-19-019

Z' search - peak in dilepton mass Background from Drell-Yan, also tand W

Table 2: Systematic uncertainties considered in this analysis and their magnitude.

Uncertainty source	Magnitude
Lepton selection efficiency	1-5% (two-sided), 0-6.5% (one-sided)
Mass scale uncertainty	1-3%
Mass resolution uncertainty	0-15%
Z peak normalization	1-5%
Integrated luminosity	2.3-2.5%
DY theoretical cross section	0-20%
Multijet background normalization	50-100%
cross section for other simulated backgrounds	7%

Systematic uncertainties in efficiency and mass scale, also in background Evaluated experimentally from Z peak Then used as nuisance parameters in Bayesian limit setting with specific priors and quoting no robustness checks

Roger Barlow (PHYSTAT2020)

Systematic Errors

Time-dependent CP analysis of $B^0 ightarrow D^{*\pm} D^{\mp}$

Table 4: Summary of the systematic uncertainties. The total systematic uncertainties are computed as quadratic sum of individual contributions.

Source	ΔC_{D^*D}	C_{D^*D}	ΔS_{D^*D}	S_{D^*D}
Fit bias	0.002	0.002	0.002	0.002
Mass model	0.006	0.014	0.003	0.011
$\Delta m_d, \tau_d, \Delta \Gamma_d$	0.001	0.003	0.001	0.001
Decay-time resolution	< 0.001	< 0.001	< 0.001	< 0.001
Decay-time acceptance	< 0.001	< 0.001	< 0.001	< 0.001
Flavour tagging	0.015	0.014	0.012	0.015
Total syst. uncertainty	0.016	0.020	0.012	0.019
Source	$\mathcal{A}_{\mathrm{raw}}^{K\pi\pi\pi,\mathrm{Run1}}$	$\mathcal{A}_{\mathrm{raw}}^{K\pi\pi\pi,\mathrm{Run2}}$	$\mathcal{A}_{ ext{raw}}^{K\pi, ext{Run1}}$	$\mathcal{A}_{ ext{raw}}^{K\pi, ext{Run2}}$
Source Fit bias	$\frac{\mathcal{A}_{\rm raw}^{K\pi\pi\pi,{\rm Run1}}}{0.0013}$	$\frac{\mathcal{A}_{\mathrm{raw}}^{K\pi\pi\pi,\mathrm{Run2}}}{0.0007}$	$\frac{\mathcal{A}_{\mathrm{raw}}^{K\pi,\mathrm{Run1}}}{0.0008}$	$\frac{\mathcal{A}_{\rm raw}^{K\pi,{\rm Run2}}}{0.0004}$
Source Fit bias Mass model	$\frac{\mathcal{A}_{\mathrm{raw}}^{K\pi\pi\pi,\mathrm{Run1}}}{0.0013}$ 0.0025	$\frac{\mathcal{A}_{\mathrm{raw}}^{K\pi\pi\pi,\mathrm{Run2}}}{0.0007}$ 0.0024	$\frac{\mathcal{A}_{\mathrm{raw}}^{K\pi,\mathrm{Run1}}}{0.0008}$ 0.0021	$\frac{\mathcal{A}_{\rm raw}^{K\pi,{\rm Run2}}}{0.0004}$ 0.0016
Source Fit bias Mass model $\Delta m_d, \tau_d, \Delta \Gamma_d$	$\frac{\mathcal{A}_{\rm raw}^{K\pi\pi\pi,{\rm Run1}}}{0.0013}\\ 0.0025\\ 0.0003$	$\frac{\mathcal{A}_{\rm raw}^{K\pi\pi\pi,{\rm Run2}}}{0.0007}\\ 0.0024\\ 0.0002$	$\frac{\mathcal{A}_{\rm raw}^{K\pi,{\rm Run1}}}{0.0008}\\ 0.0021\\ 0.0002$	$\frac{\mathcal{A}_{\rm raw}^{K\pi,{\rm Run2}}}{0.0004}\\ 0.0016\\ 0.0001$
$\begin{array}{l} \mbox{Source} \\ \mbox{Fit bias} \\ \mbox{Mass model} \\ \mbox{$\Delta m_d, \tau_d, \Delta \Gamma_d$} \\ \mbox{Decay-time resolution} \end{array}$	$\begin{array}{c} {\cal A}_{\rm raw}^{K\pi\pi\pi,{\rm Run1}} \\ 0.0013 \\ 0.0025 \\ 0.0003 \\ 0.0002 \end{array}$	$\begin{array}{c} \mathcal{A}_{\rm raw}^{K\pi\pi\pi,{\rm Run2}} \\ 0.0007 \\ 0.0024 \\ 0.0002 \\ 0.0001 \end{array}$	$\frac{\mathcal{A}_{\rm raw}^{K\pi,{\rm Run1}}}{0.0008}\\ 0.0021\\ 0.0002\\ 0.0001$	$\begin{array}{c} \mathcal{A}_{\rm raw}^{K\pi,{\rm Run2}} \\ 0.0004 \\ 0.0016 \\ 0.0001 \\ 0.0001 \end{array}$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \mathcal{A}_{\rm raw}^{K\pi\pi\pi,{\rm Run1}} \\ 0.0013 \\ 0.0025 \\ 0.0003 \\ 0.0002 \\ 0.0002 \\ 0.0003 \end{array}$	$\begin{array}{c} \mathcal{A}_{\rm raw}^{K\pi\pi\pi,{\rm Run2}} \\ 0.0007 \\ 0.0024 \\ 0.0002 \\ 0.0001 \\ 0.0001 \end{array}$	$\begin{array}{c} \mathcal{A}_{\rm raw}^{K\pi,{\rm Run1}} \\ 0.0008 \\ 0.0021 \\ 0.0002 \\ 0.0001 \\ 0.0002 \end{array}$	$\begin{array}{c} \mathcal{A}_{\rm raw}^{K\pi,{\rm Run2}} \\ 0.0004 \\ 0.0016 \\ 0.0001 \\ 0.0001 \\ 0.0001 \end{array}$
Source Fit bias Mass model $\Delta m_d, \tau_d, \Delta \Gamma_d$ Decay-time resolution Decay-time acceptance Flavour tagging	$\begin{array}{c} \mathcal{A}_{\rm raw}^{K\pi\pi\pi,{\rm Run1}} \\ 0.0013 \\ 0.0025 \\ 0.0003 \\ 0.0002 \\ 0.0003 \\ 0.0003 \\ 0.0001 \end{array}$	$\begin{array}{c} \mathcal{A}_{\rm raw}^{K\pi\pi\pi,{\rm Run2}} \\ \hline 0.0007 \\ 0.0024 \\ 0.0002 \\ 0.0001 \\ 0.0001 \\ 0.0001 \end{array}$	$\begin{array}{c} \mathcal{A}_{\rm raw}^{K\pi,{\rm Run1}} \\ 0.0008 \\ 0.0021 \\ 0.0002 \\ 0.0001 \\ 0.0002 \\ 0.0001 \\ 0.0001 \end{array}$	$\begin{array}{c} \mathcal{A}_{\rm raw}^{K\pi,{\rm Run2}} \\ 0.0004 \\ 0.0016 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \end{array}$

LHCB2 - continued

Check the statistical error produced by the fit using bootstrapped samples Fit Bias - many fits with toy MC. No bias found BUT uncertainty on mean value of bias taken as uncertainty on parameter. Cautious. Mass Model: try different ones (order of polynomials, number of Xtal ball curves...) using toy MC pseudoexperiments, fitting nominal and other model. Then

with the alternative model. Results of the subsequent decay-time fit are compared to those obtained with the nominal fit and the distribution of their difference is built. The systematic uncertainty is defined as the sum in quadrature of the average and root mean square of the distribution.

This looks like a possible over-estimate

Many Checks by subsamples: D^0 final state, tagging algorithm, magnet polarity. Also B_s^0 contamination, spline knots, etc All within 2 sigma so nothing assigned.

Flavour tagging: uncertainties largely included in statistical error, also consider nonlinearity in SS tag probability and dependence on OS tagger on decay time, evaluated with pseudoexperiments.

ATLAS3: Evidence for $t\overline{t}t\overline{t}$ production in the multilepton final state arXiv:2007.14858v2

3 isolated leptons, or 2 with same charge Irreducible background from leptons from W, Z, τ Reducible background from fake/mis-id leptons Analysis in terms of BDT score

 $\mu = 2.0 \pm 0.4(\text{stat})^{+0.7}_{-0.4}(\text{syst}) = 2.0^{+0.8}_{-0.6}.$

 $\sigma_{t\bar{t}t\bar{t}} = 24 \pm 5(\text{stat})^{+5}_{-4}(\text{syst}) \text{ fb} = 24^{+7}_{-6} \text{ fb}.$

ATLAS3: continued

Experimental

- Luminosity
- Electron/muon MC correction factors
- Jet Energy Scale and resolution
- JVT (Jet Vertex Tagger to remove pile-up events) efficiency effect from $\pm\sigma$ variation
- b-tagging efficiency/mistag from separate study using $t\overline{t}$ enriched sample
- E_T^{miss} uncertainty from data-MC comparisons

Modelling

- vary renormalisation/factorisation scales by factors of 2
- different model for parton shower/hadronisation (details not given)
- pdf uncertainty from rms of 100 replicas
- uncertainties on background cross sections. Informed guesses(lots of 50% figures) , or theory/expt discrepancies. But these backgrounds are small

Roger Barlow (PHYSTAT2020)

Many checks performed and NOT added to systematic error

The stability of the result has been checked. The fit was repeated with the data split according to year or by splitting the signal region into two regions with either same-sign dilepton events or events with at least three leptons. Different fits were also performed by using only positively charged same-sign lepton pairs or only negatively charged same-sign lepton pairs. All these tests showed compatible μ values.

An additional test was performed by splitting the SR into five regions according to the number of leptons and *b*-tagged jets and by fitting the H_T distribution in each region. The BDT score is therefore not used in this test. The observed (expected) significance is found to be 4.3 (2.1) and the fitted signal strength is $2.2^{+0.9}_{-0.6}$. This result is consistent with the result from the default fit.

CMS3:Top quark differential cross sections

arXiv:2008.07860v1

- 12 Experimental uncertainties, for separate all-jet and lepton-jet channels

 - Single t, W etc background to all-jet. Change cross sections by 50%, negligible shift. Probably overkill but contribution very small
 - Background in l + jets. Apply large uncertainties (30%-50%), get small changes (BG is fitted)
 - **9** JES. Major factor and well studied. Vary 24 components
 - JER. Smear by JES. Small effect
 - *t* tag efficiency. From fit.
 - b tag efficiency (all-jet). Major factor and well studied.
 - **(a)** b tag efficiency (ℓ -jet). Major factor and well studied.
 - Pileup modelling. Change cross section used in reweighting. Negligible effect
 - Trigger efficiency from orthogonal trigger.Small effect
 - Lepton ID efficiency from tag-and-probe

Roger Barlow (PHYSTAT2020)

Systematic Errors

6 theoretical uncertainties. 3 from matrix elements studied through event weights, 3 from parton shower studied through separate samples.

- **O** PDFs. Standard deviation from 100 replicas of NNPDF
- Penormalisation and factorisation scales. Take factors of 2 up or down and envelope of results
- 3 α_s vary by ± 0.001
- ISR and FSR uncertainty. Change scales by (large) factors.
- **Solution** ME/PS matching. Change h_{damp} by (large) factors.
- MC tune vary CUETP8M2T4 parameters by $\pm 1\sigma$.

LHCB3: Measurement of the branching fractions for $B^+ \rightarrow D^{*+}D^-K^+$, $B^+ \rightarrow D^{*-}D^+K^+$, and $B^0 \rightarrow D^{*-}D^0K^+$ decays

arXiv:2005.10264v2

Table 3: Systematic uncertainties on $\mathcal{N}^{\rm corr}$ from the signal PDF parameters ($\sigma_{\rm PDF}$), the finite simulation samples ($\sigma_{\rm MC}$), the PID resampling ($\sigma_{\rm PID}$), the residual peaking background ($\sigma_{\rm bkg}$), and the total systematic uncertainty ($\sigma_{\rm tot.}$). All values are given as a percentage of the central value of $\mathcal{N}^{\rm corr}$.

Docov channel		Rı	ın 1 (%	ő)			Ru	n 2 (%)	
Decay channel	$\sigma_{\rm PDF}$	$\sigma_{\rm MC}$	$\sigma_{\rm PID}$	$\sigma_{\rm bkg}$	$\sigma_{\text{tot.}}$	$\sigma_{\rm PDF}$	$\sigma_{\rm MC}$	$\sigma_{\rm PID}$	$\sigma_{\rm bkg}$	$\sigma_{tot.}$
$B^+ \rightarrow D_{K\pi}^{*+} D^- K^+$	0.6	0.8	1.5	0.8	2.0	0.5	1.4	0.2	0.5	1.6
$B^+ \rightarrow D_{K3\pi}^{*+} D^- K^+$	1.2	1.2	0.9	1.4	2.4	1.0	2.1	0.7	0.6	2.5
$B^+ \rightarrow D^{*-}_{K\pi} D^+ K^+$	0.5	1.0	0.4	0.7	1.4	0.8	1.8	0.7	0.4	2.1
$B^+ \rightarrow D^{*-}_{K3\pi} D^+ K^+$	1.4	1.6	1.1	1.2	2.7	0.7	2.5	1.2	0.6	2.9
$B^0 \rightarrow D_{K\pi}^{*-} D_{K\pi}^0 K^+$	0.6	0.7	0.9	0.3	1.3	0.5	1.1	0.2	0.2	1.2
$B^0 \to D_{K3\pi}^{*-} D_{K\pi}^0 K^+$	0.8	1.2	0.3	0.7	1.6	0.8	1.7	0.6	0.3	2.0
$B^0 \to D_{K\pi}^{*-} D_{K3\pi}^0 K^+$	0.9	1.2	0.3	0.6	1.6	0.6	2.0	0.3	0.3	2.1
$B^+\!\rightarrow \overline{D}{}^0_{K3\pi} D^0_{K\pi} K^+$	0.6	1.1	1.0	0.9	1.8	1.1	1.8	0.5	0.4	2.2
$B^+ \rightarrow \overline{D}^0_{K\pi} D^0_{K3\pi} K^+$	0.7	1.1	0.5	0.7	1.6	0.7	1.6	0.4	0.3	1.8
$B^0 \rightarrow D^- D^0_{K\pi} K^+$	0.4	0.7	0.5	0.4	1.0	0.3	0.7	0.7	0.2	1.1
$B^0 \rightarrow D^- D^0_{K3\pi} K^+$	0.2	1.4	0.3	0.5	1.5	0.8	1.3	0.4	0.3	1.6

LHCB3: continued

Two nice methods to note

• Signal shapes described by DSCB (Double Sided Crystal Ball) function.

Uncertainty in tail parameters.

Rather than take $\pm \sigma$ and refit to get σ_{BR} , do many refits

with Gaussian random samplings of parameters, and take RMS

 Lack of MC data limits efficiency estimates.
 Repeat using bootstrapped samples from the MC data to get good estimate of uncertainty in efficiency

ATLAS4: Study of B^0 and B_s^0 decays into muon pairs JHEP 04 (2019) 098, arXiv:1812.03017v2

ATLAS4:continued

Measure $B^0_{(s)} o \mu^+ \mu^-$ relative to common $B^+ o J/\psi(o \mu^+ \mu^-) K^+$

Source	B_{s}^{0} [%]	$B^0 [\%]$			
f_s/f_d	5.1	-	8	10 ⁶ • B*→ J/⊕ K* beckground-subtracted data	B · B'
B^+ yield	4.8	4.8	8 / 0.C	10 ⁵	00000 B'-J/ψK' MC 2 50000 ATLAS
R_{ε}	4.1	4.1	Even	10 ⁴ ¹ / ₉ = 13 TeV, 15.1 fb ¹	a 40000
$\mathcal{B}(B^+ \to J/\psi \; K^+) \times \mathcal{B}(J/\psi \to \mu^+\mu^-)$	2.9	2.9		10 ⁵ - + + + + + + + + + + + + + + + + + +	2000
Fit systematic uncertainties	8.7	65			10000
Stat. uncertainty (from likelihood est.)	27	150	WC	1.5	8
			Date		
Table 2: Summary of the uncertai	ntias in D			$B^* \rightarrow J/\psi K^* [\alpha_{2D}] [rad]$ (a)	$B \rightarrow Jrp K In(\chi^{a}_{pV,DV})$ (b)
Table 2. Summary of the uncertai	nues in $\Lambda_{\mathcal{E}}$.				
G					
Source C	ontribution	n [%]	0.02	10 ⁵ B ⁺ → J/lp K ⁺ background-subtracted data B ⁺ → J/lp K ⁺ MC	0 10 ⁴ · B ² ₀ → J/ψ φ background-subtracted data
Source C Statistical	ontribution 0.8	n [%]	ents / 0.02	10 ⁰ B ⁺	$\begin{array}{c c} & & & & & & & & & \\ \hline 0 & & & & & & & & \\ & & & & & & & & \\ \hline 0 & & & & & & & & \\ \hline 1 & & & & & & & & \\ \hline 1 & & & & & & & & \\ \hline 1 & & & & & & & & \\ \hline 1 & & & & & & & & \\ \hline 1 & & & & & & & & \\ \hline 1 & & & & & & & & \\ \hline 1 & & & & & & & & \\ \hline 1 & & & & & & & & \\ \hline 1 & & & & & & & & \\ \hline 1 & & & & & & & & \\ \hline 1 & & & & & & & \\ \hline 1 & & & & & & & \\ \hline 1 & & & & & & & \\ \hline 1 & & & & & & & \\ \hline 1 & & & & & & & \\ \hline 1 & & & & & & & \\ \hline 1 & & & & & & & \\ \hline 1 & & & & & & & \\ \hline 1 & & & & & & & \\ \hline 1 & & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & \\ 1 & & & & \\ \hline 1 & & & & \\ \hline 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & &$
Source C Statistical Kinematic reweighting (DDW)	ontribution 0.8 0.8	n [%]	Events / 0.02	10 ⁶ B'- J/ly K' background-subtracted data - B'- J/ly K' MC 711 10 ⁶ 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 7	$\begin{array}{c} 00\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
Source C Statistical Kinematic reweighting (DDW) Muon trigger and reconstruction	ontribution 0.8 0.8	n [%]	Events / 0.02	10 ⁶ - 10 ⁻ - 10 ⁴ K ⁺ Salagende subsetted data - 10 ⁻ - 10 ⁻ - 10 ⁴ K ⁺ Salagende subsetted data 10 ⁴ - ATLAS 10 ⁴ - ATLAS	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Surce C Statistical Kinematic reweighting (DDW) Muon trigger and reconstruction BDT input variables	0.8 0.8 1.0 3.2	n [%]	Events / 0.02	10 (* -19) (* biologicanstanting data 	00000000000000000000000000000000000000
Source C Statistical Kinematic reweighting (DDW) Muon trigger and reconstruction BDT input variables Kaon tracking efficiency	0.8 0.8 0.8 1.2 3.2 1.5	n [%]	taMC Events / 0.02	0° -1°1° -1°<	0000 010 - 01 - 04 - 04 MC 010 - 01 - 01 - 04 MC 010 - 04 MC 01
Source C Statistical Kinematic reweighting (DDW) Muon trigger and reconstruction BDT input variables Kaon tracking efficiency Pile-up reweighting	0.8 0.8 0.8 1.0 3.2 1.5 0.6	<u>n [%]</u>	Data/MC Events / 0.02	10 ¹ - ¹⁰ - ¹⁰ V ¹ Statigues and more statistics of the statistic statistics of the stat	$\begin{array}{c} \text{Original} \\ Origina$

Get systematics from pseudo-experiment fits varying assumptions (signal properties, reconstruction, backgrounds, data from sidebands...) Says 'was used to evaluate systematic uncertainties' but don't say how... hope it was quadrature not range

Roger Barlow (PHYSTAT2020)

Systematic Errors

CMS4: Search for dark matter in association with $Z \rightarrow e^+e^- \text{ or } \mu^+\mu^-$ (Z with missing P_T at some M_T) arXiv :2008.04735v1

Write down binned likelihood with $\prod e^{(\theta_i - \hat{\theta}_i)^2/2}$ for nuisance parameters

Source of uncertainty	Impact assuming signal	Impact assuming no signal
Integrated luminosity	0.013	0.002
Lepton measurement	0.032	0.050
Jet energy scale and resolution	0.042	0.024
Pileup	0.012	0.09
b tagging efficiency	0.004	0.002
Theory	0.088	0.085
Simulation sample size	0.024	0.023
Total systematic uncertainty	0.11	0.11
Statistical uncertainty	0.089	0.073
Total uncertainty	0.14	0.13

This is an example of one particular model - Zh, where h may or may not decay to *invisible*. Shift parameters by ± 1 sigma. Correlation included or not ,as appropriate Biggest source 'theory' - renorm and factorisation scales, α_s , pdfs, EWK corrections

Roger Barlow (PHYSTAT2020)

LHCB4: CP observables in $B^{\pm} \rightarrow DK^{\pm}$ and $B^{\pm} \rightarrow D\pi^{\pm}$ with $D \rightarrow K_s^0 K^{\pm} \pi^{\mp}$ JHEP 2020, 58 (2020), arXiv:2002.08858v2

D is mixture of D^0 and $\overline{D^0}$. Analysed using Dalitz plots. Separate results inside and outside K^{*+} band and for relative charges (OS,SS) of *B* and π in *D* decay.

Measure A, asymmetries between B^+ and B^- , and ratios R Results agree with SM and will improve γ measurement in due course

Obsemable	₽a	DDF	CL.	Access	PID.	Total
Observable	ъIJ	rDr	Cis	Asym	rib	Tota
$A_{SS}^{D\pi}$	0.0	0.5	0.4	25.6	0.8	25.6
$A_{OS}^{D\pi}$	0.0	0.4	0.7	16.9	0.9	16.9
A_{SS}^{DK}	0.0	1.7	10.1	11.9	6.3	16.9
A_{OS}^{DK}	0.0	0.3	16.7	1.3	5.5	17.7
$R_{\rm SS/OS}$	33.6	0.5	0.2	0.1	0.5	33.6
$R_{88}^{DK/D\pi}$	29.2	3.2	31.3	0.1	8.1	43.7
$R_{c \varphi}^{D K/D \pi}$	15.5	2.7	40.9	0.1	4.9	-44.1

Table 3: Systematic uncertainties for the non- K^{++} region fit. Uncertainties are quoted as a percentage of the statistical uncertainty or a given observable, and the total uncertainty is given by the sum in quadrature of each contribution.

Observable	Eff	PDF	Cls	A sym	PID	Total
$A_{SS}^{D\pi}$	0.0	0.4	0.6	14.3	1.0	14.4
$A_{OS}^{D\pi}$	0.0	0.7	0.5	18.4	1.7	18.5
A_{SS}^{DK}	0.1	0.5	17.8	7.1	5.8	20.0
A_{OS}^{DK}	0.0	1.5	10.9	1.3	9.4	14.5
R _{SS/OS}	48.6	0.6	0.5	0.1	0.4	48.6
$R_{SS}^{DK/D\pi}$	14.8	3.0	$^{44.4}$	0.1	4.4	47.1
$R_{OS}^{DK/D\pi}$	18.6	4.0	32.7	0.1	7.3	38.5

Dominated by different sources for different observables

Efficiency corrections, Fixed shape parameters, Charmless backgrounds, B^{\pm} etc asymmetry corrections, PID corrections

Avoid systematic from *D* decay model by using data (from CLEO-c).

Summary

Wow!

Very impressive quantity and quality of work in these analyses

Taxonomy holds up

Categorisation into Experimental and Modelling (=theory?) uncertainties also useful

Common Experimental Uncertainties well studied

Jet Energy Scale and Resolution, Trigger Efficiency, *b*-tagging, lepton and hadron ID, Luminosity

Common Theoretical Uncertainties well studied

QCD scales, α_s , pdf parametrisations

Very seldom

- If you're an engineer. Then you quote tolerances. If you have a 99 ± 1 mm peg and a 101 ± 1 hole you want it to fit *every* time.
- If you define 'error' as '68% central confidence region' as opposed to 'rms spread'¹ and an ultrafrequentist approach to '68% confidence means θ lies in the region at least 68% of the time', i.e. for absolutely all values of ν, rather than profiling or even marginalising. Note that if you take this route you can no longer add in quadrature

We must not be afraid of quoting a result that may be more than 1 sigma from the true value.

¹For Gaussian distributions it's the same

Other issues

QCD scale factors

These have big 'uncertainty'. - factor of 2 either way - but the nature of that uncertainty is subtle

Bias in fitting

Need to think hard about whether a bias is expected (from statistical properties of estimator) or whether this is a check for some hidden mistake

Should one vary the binning?

As a check. Yes.

As an estimate of uncertainty? Questionable.

Bayesian analysis: choice of prior

There is no unique correct prior Different priors give different answers Statisticians check for 'robustness under choice of prior'. Physicists lazy? Not sure if this is a 'systematic error', but should be reported somewhere

Roger Barlow (PHYSTAT2020)

Systematic Errors

19th October 2020

31 / 32

Conclusions

Principle confronts practice

The taxonomy holds up,

but there are new improved ways of estimating contributions to the error

- R_{BDT} where properties are used in BDT training
- ullet Sampling from Gaussian rather than just taking $\pm\sigma$
- Bootstrap to check fit accuracy is what it says it is, and to get errors from finite samples
- Treating model choice as 'nuisance parameter'

But we have work to do

There are still many 'conservative' (i.e. too large) systematic errors quoted The statistics expert community (this means you) should take a firm line

Backup: combining experiments arXiv: 1701.13701v2

Fitting functions to data from several experiments Should you

(1) minimise χ^2 using inverse correlation matrix (2) introduce extra parameters and just use the diagonal terms?

Answer (after some algebra): it doesn't matter.

The two methods are equivalent.

This applies both to additive and multiplicative errors

(2) is usually easier and more informative, and $N_p + N_e$ variable minimisation splits into $N_p \times N_e$

Multiplicative errors lead to bias if applied to the data but not if applied to the function