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Fitting

General problem: you have a dataset {x1, x2 . . . xN} and a probability
(density) function P(x ; a). (The xi may be multidimensional. So may a. )
You need to know:

1 What is the best value for a? Estimation

2 How accurate is that? Errors

3 Does the model truly describe this data? Goodness of fit
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Estimation

Very general definition: an estimator is a function of the data which
returns a value for the parameter you want to know about.

â(x1 . . . xN)
gives a number hopefully close to the true value of a.
(N.b. not a rough guess. Carefully evaluated)
A good estimator is:

1 Consistent. â→ atrue as N →∞.
If you take enough data it will give the right answer

2 Unbiassed. 〈â〉 = atrue .
A particular instance may be too high or too low but over many
measurements this balances.

3 Efficient.
〈
(â− atrue)2

〉
should be small

It turns out there is a limit to the efficiency: the Minimum Variance
Bound (MVB)
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Introducing Likelihood

The likelihood is just the combined probability (density) for the dataset
L(x1...xN ; a) = P(x1; a)P(x2; a)...P(xN ; a)

Averaging over many repetitions gives Expectation Values
〈f 〉 ≡ E (f ) =

∫ ∫
· · ·
∫
f (x1, x2 . . . xN)L(x1, x2 . . . xN ; a)dx1 dx2 . . . dxN

Note: expectation values are functions of a but not of x - that’s all been
integrated away

Reminder

L(x1 . . . xN ; a) is the likelihood for a particular set of results, given some
value for the parameter a. It is not the likelihood for a having a particular
value.
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Maximum Likelihood Estimation

General principle for â(x1 . . . xN): choose the value of a which maximises
L(x1 . . . xN ; a) (In practice: maximise ln L =

∑
i lnP(xi ; a).)

Example

N measurements of something, each Gaussian with standard deviation σi
lnP(xi ; a) = −1

2
(xi−a)2

σ2
i
− lnσi

√
2π

Find maximum by
d ln L
da = 0 =

∑
i
xi−â
σ2
i

=⇒ â =
∑ xi

σ2
i
/
∑ 1

σ2
i

Example

Measurements are unknown mixture of signal, S(x), and background,
B(x). a is fraction that is signal.
P(x ; a) = aS(x) + (1− a)B(x)

=⇒
∑ S(xi )−B(xi )

aS(xi )+(1−a)B(xi )
= 0. Solve numerically
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ML estimators

Are consistent

Are in general biassed – but the bias falls line 1
N

Are as efficient as allowed by the MVB: V (â) = −1/
〈
∂2 ln L
∂a2

〉

Differentiate and solve
algebraically

Differentiate and solve
numerically

Maximise numerically

Solving numerically one reads off σâ from points where ∆ ln L = −1
2 ,

approximating
〈
∂2 ln L
∂a2

〉
= ∂2 ln L

∂a2
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Fitting for several variables

Same technique

Example

N measurements of something, Gaussian but both mean and σ unknown

lnP(xi ;µ, σ) = −1
2

(xi−µ)2

σ2 − lnσ
√

2π
Find maximum by
d ln L
dµ = 0 =

∑
i
xi−µ̂
σ̂2

d ln L
dσ = 0 =

∑
i

(xi−µ̂)2

σ̂3 − N
σ̂

=⇒ µ̂ = 1
N

∑
xi and σ̂2 = 1

N

∑
(xi − µ̂)2

(Notice how this doesn’t include Bessel’s correction.)

Errors are a bit different. ’1-sigma’ error region given by ∆ ln L = −1.14
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From ML to least squares
Gaussians again

Suppose each data point is an (x , y) pair, with a predicted function f (x ; a)
and y is Gaussian, mean f (x ; a) and standard deviation σ.

Log likelihood is then ln L = −1
2

∑(
yi−f (xi ;a)

σi

)2
= −1

2χ
2

Maximising likelihood ≡ Minimising χ2. Hence the name ‘least squares’
And ∆ ln L = −1

2 ≡ ∆χ2 = 1

Differentiate and set to zero =⇒
∑

i
∂f (xi ;a)
∂a

f (xi ;a)
σ2
i

=
∑

i
∂f (xi ;a)
∂a

yi
σ2
i

If f (x ; a) is linear in a (e.g. f (x) = a0 + a1x + a2x
3 + a3sin(x)) can write

f (xi ) =
∑

j cj(xi )aj =
∑

j Cijaj ,
∂f (xi )
∂aj

= Cij , and equation becomes

C̃Vy
−1

Câ = C̃Vy
−1

y
(If the yi are independent then Vy

−1 is diagonal with elements 1/σ2
i )

â = (C̃Vy
−1C)−1C̃Vy

−1
y

Do not invert the matrix! Use solve(M,v) or equivalent linsolve,
np.linalg.solve .
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An example

300 values drawn from
Gaussian of unknown
mean, σ = 0.2, on a flat
background
2 parameters: M the
Gaussian mean and p
the fraction

Method 1: histogram in 20 bins, do χ2 fit Fit converges to
(M = 0.63, p = 0.37)
Method 2: Maximum likelihood. Contours shown, Optimizer starts at
(M = 1.0, p = 0.5 and converges to (M = 0.69, p = 0.29)
N.b. true values M = 0.6, p = 1

3
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Example - the program (R version)
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Numerical methods for optimisation

R: optim
Python: scipy.optimize.minimize

MATLAB. fminsearch and fminunc

Methods

1 Simplex. Slow but ’safe’, shrinking mesh method

2 Gradient-based. Generalisations of Newton’s method are faster
provided one is close to the true minimum. Gradient may be supplied
by the user or evaluated numerically.

3 Annealing. Find minimum, then jump to random point and re-start
and check solution is the same.

Other arguments involve limits on parameters (best to avoid), step sizes,
tolerances for claiming solution, etc.

Very obvious point

When maximising a function using a minimiser, don’t forget the minus sign
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Errors: another way to evaluate them

Using χ2 we have â = (C̃Vy
−1C)−1CVy

−1y

Errors on a are due to errors on y , the σi , and the usual combination of
errors formula can be used

After some algebra,

Va = (C̃Vy
−1

C)−1

Showing that this is compatible with the errors from ∆χ2 = 1 is left as an
exercise for the reader.
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χ2 and goodness-of-fit

Remember, writing fi ≡ f (xi ; a), χ2 =
∑N

i=1

(
yi−fi
σi

)2

Obviously, χ2 should be about N
Bit of algebra:

P(χ2;N) = χN−2e−χ
2/2

2N/2Γ(N/2)

Function available as dchisq in R,
chi2pdf in MATLAB and chi2.pdf

from scipy.stats
If the function has been fitted then
N → NDF = Npoints − Npars number
of ”degrees of freedom”
Turns out〈
χ2
〉

=
∫∞

0 χ2P(χ2;N) dχ2 = N

If χ2 >> N then (i) your model is wrong or (ii) your data is wrong or (iii)
your errors are underestimated or (iv) you are unlucky
If χ2 << N then (i) your errors are overestimated or (ii) you are lucky
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Hypotheses and p-values

p-value

Probability under the null hypothesis of getting a result this extreme (or
worse)

Suppose N = 5 and you get χ2 = 7.56. Is that bad?
p-value is

∫∞
7.56 P(χ2; 5) dχ2 = 0.18

If there is a distribution which really is P(χ2, 5), the
probability of getting a χ2 value of 7.56 or more is 18%

This is an instance of hypothesis testing. To make the case for an effect,
hypothesis H1, you have to show that the null hypothesis H0 is implausible
E.g. to show a medicine works, you have to show that this many cases
would not have occurred by chance
Here: if you want to show that y does vary with x , for 6 values, you have
to show that the hypothesis y = constant is implausible (and in this case
you havn’t)
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Goodness of fit from Likelihood
Very short slide

Can’t be done. The actual value of the likelihood tells you nothing about
the fit quality. Even if you include all the constant factors

WIlks’ theorem says that (for large N) ∆ ln L behaves like χ2, but this only
applies to the difference in log likelihood for two models, where one is the
limiting case of the other, and does not have any parameters which are
meaningless in the first model. So you can use it, e.g. to see whether a
cubic gives a meaningfully better fit than a parabola. But not whether
either fit is valid.
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Bayesian Methods
Really needs a whole lecture, not just one slide...

Bayes’ Theorem

P(A|B) = P(B|A)
P(B) P(A)

Bayes Theorem for parameters

P(a|x) ∝ L(x ; a)P(a)
Posterior ∝ likelihood × Prior

From Posterior you can get best value, errors, etc.
But to use this you need the Prior - which is (usually) not just unknown
but meaningless (unless you switch to using subjective probability)
Different priors give different posteriors. A uniform prior is not the answer

Bayesian methods can often be illuminating and sometimes essential. But
they come with a whole slew of problems the salesmen don’t tell you about
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Setting Limits
Really needs a whole lecture, not just one slide...Particle physicists spend a lot of time on
this. Accelerator physicists less so. Be grateful!

Searching for a signal which may or may not be there
Discovery: see a signal and use p-value to establish that it is very unlikely
(p < 3× 10−7, or ’five sigma’) that a model H0(S = 0) with zero signal
would give a result this extreme (i.e. this large or larger)
Non-discovery: signal is small/zero. Find a signal strength S+ such that it
is quite unlikely (p < 5%, or maybe 10%) that under a model H0(S = S+)
would give a result this extreme (i.e. this small or smaller). Then quote
S+ as 95% (or maybe 90%) confidence level upper limit.

” We observe only 6 events, with an expected background of 2.1 events.
As there is a 2% probability of getting 6 or more events from a Poisson
with mean µ = 2.1 we claim evidence for a signal, but not a discovery. For
µ = 3.3 or more, the probability of getting 6 events or less is only 5%. We
therefore say with 95% confidence that if there is any signal it is below the
equivalent of 1.2 events”
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Systematic errors (1)

What they are

Errors that are random but shared between measurements

Examples

Poisson counts from a detector with efficiency η ± ση
BPM measurements where the calibration is c ± σc
Disease instances by date where the collection efficiency is C ± σC

What they are not

Mistakes, faulty equipment, wrong assumptions, misconnected cables

Why they are scary

If you get them wrong, they do not show up as bad χ2 etc
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Systematic errors (2): How to evaluate them?

The ancillary experiment

A separate experiment, often a calibration. Or a Monte Carlo simulation

Guesswork

Expert opinion (based on knowledge, experience, etc) of the uncertainty
Be careful to use 68% sigma-type errors, not tolerances. Do not be
tempted to be ‘conservative’.
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Systematic errors (3): How to apply them

Standard combination-of-errors-formula including correlations. For f (x , y)

σ2
f =

(
∂f

∂x

)2

σ2
x +

(
∂f

∂y

)2

σ2
y + 2

(
∂f

∂x

)(
∂f

∂y

)
Cov(x , y)

If x and y have individual errors sx , sy and shared error S then variance
matrix is

V =

(
s2
x + S2 S2

S2 s2
y + S2

)
Matrices for more variables, and experiments with different shared
systematics, can be built up in the same way
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Systematic Errors (4): Nuisance parameters

It can be helpful to think of systematic uncertainties as ’nuisance
parameters’, ν

Write down the likelihood in terms of the raw
measurements with the factors applied explicitly,
including prior knowledge from the ancillary
experiment etc.

Fit by maximising the likelihood in all parameters

Total error from ∆ ln L = −1
2 in the profile

likelihood L(a, ˆ̂ν, x) where for each value of a
considered, the value of ν is adjusted to give the
maximum likelihood for that a
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Checks

Although a systematic error is not a mistake, mistakes do happen
Checks are an important safeguard against mistakes

Analysing subsets of data (this year’s data and last year’s)

Making changes which should in principle give the same result
(changing bin size for fitting histogram)

Making measurements for which the answer is known (if measuring
mass of the Higgs, check you get the right mass for the Z )

If the differences are small, say ”OK” and move on. Do NOT add them to
the systematic error
If the differences are large, worry and sort them out. Do NOT just add
them to the systematic error.
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What happens next

1 Split into groups as before

2 Download https://barlow.web.cern.ch/barlow/lecture2.dat

3 The data is a set of measurements in the range 0 to 5, containing two
Gaussian peaks on a flat background. One has width 0.1 and the
other 0.2.

4 Determine the means and fractions (4 parameters), using a histogram
and χ2 and by maximising the unbinned likelihood. Show the results
are similar but different

5 Look at how the binning affects your results from the histogram

6 Explore the options of your minimiser package

7 Prepare a short presentation of your results. Time about 10 minutes

8 After lunch (2:00) we re-convene. Groups make their presentations in
turn, and the rest of us listen and learn and criticise.
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