Systematic Errors (2) Working with Systematic Errors

Roger Barlow Huddersfield University

Terascale Statistics School 2023 DESY, Hamburg

5th July 2023

Why do we quote systematic errors separately?

Results are always given like

In conclusion, we have measured $m=12.1\pm0.3\pm0.4$, where the first error is statistical and the second is systematic

Or even ' \pm statistical, \pm systematic, \pm luminosity uncertainty, \pm theory uncertainty, \pm branching ratio uncertainty'

Why quote them separately?

Why not just 12.1 ± 0.5 ?

Minor reason - shows whether result is statistics limited

Major reason - to enable combination of this result with others that share a systematic uncertainty

Combination of Errors

What is the error on f(x, y)

For undergraduates

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2$$

For graduates

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2 + 2\rho \left(\frac{\partial f}{\partial x}\right) \left(\frac{\partial f}{\partial y}\right) \sigma_x \sigma_y$$

If there are several functions and several variables this generalises to

$$\mathbf{V}_f = \tilde{\mathbf{G}} \mathbf{V_x} \mathbf{G} \tag{1}$$

where V_f and V_x are the covariance matrices and $G_{ij}=rac{\partial f_j}{\partial x_i}$

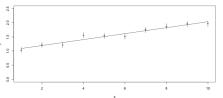
Example - the straight line fit

$$y = mx + c$$

$$m = \frac{\overline{xy} - \overline{x} \, \overline{y}}{\overline{x^2} - \overline{x}^2} = \frac{\sum (x_i - \overline{x}) y_i}{N(\overline{x^2} - \overline{x}^2)}$$

$$c = \overline{y} - m\overline{x} = \frac{\overline{x^2} \, \overline{y} - \overline{x} \, \overline{xy}}{\overline{x^2} - \overline{x}^2} = \frac{\sum (\overline{x^2} - x_i \overline{x}) y_i}{N(\overline{x^2} - \overline{x}^2)}$$

$$\mathbf{V_y} = \sigma^2 \mathbf{I}$$



Equation 1 gives the usual errors, and also the correlation:

$$V_m = \frac{\sigma^2}{N(\overline{x^2} - \overline{x}^2)}$$
 $V_c = \frac{\sigma^2 \overline{x^2}}{N(\overline{x^2} - \overline{x}^2)}$ $Cov = -\frac{\overline{x}\sigma^2}{N(\overline{x^2} - \overline{x}^2)}$ $\rho = -\frac{\overline{x}}{\sqrt{\overline{x^2}}}$

Note 1: Even though the y_i are independent, m and c are correlated

Note 2: Correlation vanishes if $\overline{x} = 0$. Or write $y = m(x - \overline{x}) + c'$

Note 3: in this example,

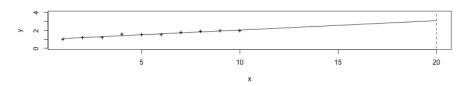
$$m = 0.105 \pm 0.011$$
, $c = 0.983 \pm 0.068$, $\rho = -0.886$

4/16

Example - the straight line fit

Continued

Extrapolation of a straight line - what is y at x = 20?



$$y = 0.983 + 20 \times 0.105$$

Error from $\sqrt{0.068^2 + 20^2 \times 0.011^2} = 0.23$ Wrong

Correct Error from

$$\sqrt{0.068^2 + 20^2 \times 0.011^2 - 2 \times 0.886 \times 20 \times 0.068 \times 0.011} = 0.16$$

5/16

Building a covariance matrix

Matrix element
$$V_{ij} = \langle (x_i - \langle x_i \rangle)(x_j - \langle x_j \rangle) \rangle = \langle x_i x_j \rangle - \langle x_i \rangle \langle x_j \rangle$$

Given correlated x_1 and x_2 , model as $x_1 = y_1 + z$, $x_2 = y_2 + z$, where y_1, y_2, z independent with errors σ_1, σ_2, S . (Example: tracking detector where $y_i \pm \sigma_i$ are the measurements within the detector and $z \pm S$ is the position of the detector.)

$$V_{11} = \langle (y_1 + z)(y_1 + z) \rangle - \langle (y_1 + z) \rangle^2 = \sigma_1^2 + S^2.$$

 V_{22} similar

$$V_{12} = V_{21} = \langle (y_1 + z)(y_2 + z) \rangle - \langle (y_1 + z) \rangle \langle (y_2 + z) \rangle = S^2$$

$$\mathbf{V} = \begin{pmatrix} \sigma_1^2 + S^2 & S^2 \\ S^2 & \sigma_2^2 + S^2 \end{pmatrix}$$

For more variables, build up larger matrix where off-diagonal elements come from shared features, on-diagonal gives total variance.

Building a correlation matrix

continued

Suppose experiment A measures x_1 and x_2 with shared systematic uncertainty S_A , and experiment B measures x_3 and x_4 with shared S_B

$$\mathbf{V} = \begin{pmatrix} \sigma_1^2 + S_A^2 & S_A^2 & 0 & 0 \\ S_A^2 & \sigma_2^2 + S_A^2 & 0 & 0 \\ 0 & 0 & \sigma_3^2 + S_B^2 & S_B^2 \\ 0 & 0 & S_B^2 & \sigma_4^2 + S_B^2 \end{pmatrix}$$

Similar for (more common) shared multiplicative uncertainty - (e.g. efficiency, luminosity, normalisation...)

$$x_1 \pm \sigma_1 \pm S_1$$
 and $x_2 \pm \sigma_2 \pm S_2$ with $S_1 = \xi x_1, S_2 = \xi x_2$

$$\mathbf{V} = egin{pmatrix} \sigma_1^2 + S_1^2 & S_1 S_2 \\ S_1 S_2 & \sigma_2^2 + S_2^2 \end{pmatrix}$$

PDG, HFLAV and similar groups do this on an industrial scale

7/16

Using the matrix

Independent measurements

Maximum Likelihood o Least Squares o minimise $\chi^2 = \sum_i \left(\frac{y_i - f(x_i)}{\sigma_i}\right)^2$

What if the y_i are not independent but correlated with non-diagonal covariance matrix V_v ?

Rotate to $\mathbf{y}' = \mathbf{R}\mathbf{y}$ such that $Cov(y_i'y_j')$ is diagonal

$$\mathbf{V'} \text{ diagonal by construction. } \mathbf{V'}^{-1} = \begin{pmatrix} 1/\sigma_1'^2 & 0 & 0 & \dots \\ 0 & 1/\sigma_2'^2 & 0 & \dots \\ 0 & 0 & 1/\sigma_3'^2 & \dots \\ \dots & & & & \\ \end{pmatrix}$$

and
$$\mathbf{V}' = \mathbf{R}\mathbf{V}\mathbf{\tilde{R}}$$

 $\chi^2 = (\mathbf{\tilde{y}} - \mathbf{\tilde{f}})\mathbf{\tilde{R}}[\mathbf{R}\mathbf{V}\mathbf{\tilde{R}}]^{-1}\mathbf{R}(\mathbf{y} - \mathbf{f}) = (\mathbf{\tilde{y}} - \mathbf{\tilde{f}})\mathbf{V}^{-1}(\mathbf{y} - \mathbf{f})$

Forget about the primed system and use $\chi^2 = (\mathbf{\tilde{y}} - \mathbf{\tilde{f}})\mathbf{V}^{-1}(\mathbf{y} - \mathbf{f})$

The famous Hessian matrix

$$\frac{\partial^2 \ln L}{\partial a_i \partial a_j}$$

 $\hat{a_1}$ and $\hat{a_2}$ are functions of the data: maximise $\ln L(a_1,a_2)=\sum_i \ln P(x_i;a_1,a_2)$

To first order about
$$a^{true}$$
,

$$\frac{\partial \ln L}{\partial a_1}|_{a=a^{true}} + \frac{\partial^2 \ln L}{\partial a_1^2} (\hat{a_1} - a_1^{true}) + \frac{\partial^2 \ln L}{\partial a_1 \partial a_2} (\hat{a_2} - a_2^{true}) = 0$$

$$\frac{\partial \ln L}{\partial a_2}|_{a=a^{true}} + \frac{\partial^2 \ln L}{\partial a_1 \partial a_2} (\hat{a_1} - a_1^{true}) + \frac{\partial^2 \ln L}{\partial^2 a_2} (\hat{a_2} - a_2^{true}) = 0$$

Same as last lecture on ML errors, but matrix form

Various assumptions (no bias, large N, slow variation so use found values for expectation values...)

$$V_{ij} = -\left\langle rac{\partial^2 \ln L}{\partial \mathsf{a}_i \partial \mathsf{a}_k}
ight
angle^{-1}$$

Covariance matrix is just minus the inverse of Hessian matrix, which is (typically) found by minimiser

Averaging

BLUE

Given several (correlated) results y_i , how do you average them?

Best Linear Unbiased Estimator (L Lyons et al, NIM A270 110 (1988))

Minimise
$$\chi^2 = \sum_{i,j} (y_i - \hat{y}) V_{ij}^{-1} (y_j - \hat{y})$$

 $\hat{y} \sum_{i,j} V_{ij}^{-1} = \sum_{i,j} V_{ij}^{-1} y_j$
Write as $\hat{y} = \sum_i w_i y_i$ with $w_i = \frac{\sum_j V_{ij}^{-1}}{\sum_{i,j} V_{ij}^{-1}}$

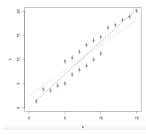
Error on \hat{y} given by $\sqrt{\tilde{\mathbf{w}}\mathbf{V}\mathbf{w}}$

Notice that $\sum_{i} w_{i} = 1$ which is intuitive

Notice that some w_i may be negative (if correlations are large) which is counterintuitye

This assumes the elements of ${f V}$ are known exactly. If not, care needed.

Equivalent alternative for additive systematics



Obvious method: Construct full covariance matrix \mathbf{V} and minimise χ^2 Alternative: introduce explicit offsets $y'_{ij} = y_{ij} + \xi_j$ for value i of expt j.

 ξ_j Gaussian with mean 0, sd S_j , included in χ^2

Fit the ξ_i and the parameter(s) a

Downside: *n* more parameters to fit

Upside (1) avoids matrix inversion

Upside (2): extracts the factors which can be useful to check behaviour

These two methods are actually (surprisingly!) equivalent

RB. Combining experiments with systematic errors **NIM A 987** 164864 (2021)

Also works for multiplicative systematics

And avoids "D'Agostini bias"

G. D'Agostini NIM A346 306 (1994)

In combining experiments adjust parameter(s) a to minimise $\chi^2 = (\tilde{\mathbf{y}} - \tilde{\mathbf{f}}(x; a))\mathbf{V}^{-1}(\mathbf{y} - \mathbf{f}(x; a))$

If ${f V}$ includes multiplicative systematic errors (from normalisation) this leads to bias

 $S_i = \xi y_i$ so small y_i have increased weight to lower χ^2

Separate fit to systematic factors and applying to the f_i avoids this (at the cost of more complicated solution)

Nuisance Parameters

Another way of thinking about systematic errors.

Suppose you have a joint likelihood function for parameters a_1 and a_2 -perhaps N_S and N_B

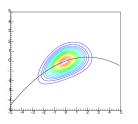
But a2 is of no interest

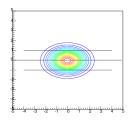
Can fix a_2 with some uncertainty (systematic error)

Or can call it a nuisance parameter and get rid of it, by profiling or marginalisation

Nuisance Parameters I

Profile Likelihood - motivation (not very rigorous)





2D likelihood plot with axes a_1 (interesting) and a_2 ('Nuisance parameter') Different values of a_2 give different results (central and errors) for a_1 Suppose it is possible to transform to $a_2'(a_1,a_2)$ so L factorises, like the one on the right. $L(a_1,a_2')=L_1(a_1)L_2(a_2')$ Whatever the value of a_2' , get same result for a_1 So can present this result for a_1 , independent of anything about a_2' . Path of central a_2' value as fn of a_1 , is peak - path is same in both plots So no need to factorise explicitly: plot $L(a_1,\hat{a}_2)$ as fn of a_1 and read off 1D values. $\hat{a}_2(a_1)$ is the value of a_2 which maximises $\ln L$ for this a_1

Note how the profile likelihood is a bit broader than a slice at constant a_2

Nuisance Parameters 2

Marginalised likelihoods

Instead of profiling, just integrate over a_2 .

Can be very helpful alternative, specially with many nuisance parameters But be aware - this is strictly Bayesian

Frequentists are not allowed to integrate likelihoods wrt the parameter

 $\int P(x; a) dx$ is fine, but $\int P(x; a) da$ is off limits

Reparametrising a_2 (or choosing a different prior) will give different values for a_1 . With a bit of luck, even radical changes in the prior for a_2 will not effect the frequentist result for a_1 .

But don't just leave it to luck. Check and make sure.

Conclusions

Systematic errors can readily be handled - with the help of the correlation matrix and other techniques