MEBT studies for IsoDAR Update

Roger Barlow

15th August 2023

The IsoDAR cyclotron is challenging The IsoDAR target is challenging

The MEBT is just a standard length of beamline connecting the two.

Aim of the current study is to show that it is buildable. A proper optimised design will come later, when the project gets funded.

Only (slight) interest is the need to keep losses low in a high-power beam which may be affected by space charge

Beam losses

Take $\sigma = 6mm$, $\sigma' = 3mrad$ in both directions (more information needed: expect this to appear sooner or later. Probably later.) Assume 5 cm radius (10 cm diameter) beampipe Assume target limit of 1W/metre for beam losses A 60 MeV, 10 mA beam is 600 kW, so should not lose more than 1 particle in 600,000 per metre 1 in 600,000 is around 5 sigma, for 2-D. So want rms spread below 1 cm.

Tools:

- Focussing. But convergence becoms divergence
- Collimation. But angular spread means effect is not permanent

Estimate beam losses from particles lost in simulation - need 6,000,000 particles for good statistics.

Overall layout

MADX simulation

shown previously

MADX "Matching" adjusts quadrupole strengths to fulfil constraints on β . (Want to keep it below about 6.0) Numbers and positions adjusted by hand...

Beam is very controlled (about 1 magnet/metre) to help keep losses down. May be relaxed in later designs.

Conversion to OPAL

Begin with just the first set of quadrupoles (all cells identical) OPAL (6000 particles) MADX horizontal vertical 9 3. (m), ß (m) 6. ŝ 5. 4. æ 3. c 2. 1. 2 0.0 25.0 0.0 20.0 s (m) 10 20 0 5 15

Getting these two to agree was a long journey!

Roger Barlow

Add the first magnet

No longer identical - but close. β values still all good

Roger Barlow

Add the wiggle

And one more, independent, quad pair. Flip comes from optimisation \$|\$OPAL\$

Still in reasonable agreement.

Complete beamline

Optimised with MADX but still looks viable with OPAL Not perfect, but will do as a straw-man design.

Roger Barlow

MEBT studies

Beam losses

Assume 10 cm diameter beam pipe rms deviations match β values No particles lost (out of 6000 - not very stringent)

Repeat with 1,000,000 particles (takes about 20 hours, using 8 cores) 21 particles lost Looks very nice...

Space charge

No apparent effects at our beam current

Off

On, 25 mA

On, 10 mA

On, 50 mA

MEBT studies

Energy spread Quoted as 0.17 MeV

Roger Barlow

Conclusions

- The MEBT is straightforward, as expected. Low (< 1W/m) losses are achievable.</p>
- ② Can use MAD to optimise and OPAL to verify
- Must also reduce horizontal spread in later part of beamline, possibly increasing vertical spread, to accomodate σ_E. Could increase beampipe size in final few metres.
- Should also look at lattice designs using fewer quadrupoles.
- Beam on target will be a Gaussian ellipse with dimensions around 1 cm.
- Final MEBT design will need definitive description of beam emerging from cyclotron and stripping foil

All very boring (in a good way).