Systematic Errors (2) Working with Systematic Errors

Roger Barlow Huddersfield University

Aachen Online Statistics School

 $16th$ March 2023

Results are always given like

In conclusion, we have measured $m = 12.1 \pm 0.3 \pm 0.4$, where the first error is statistical and the second is systematic

Or even \pm statistical, \pm systematic, \pm luminosity uncertainty, \pm theory uncertainty, ±branching ratio uncertainty'

Why quote them separately?

Why not just 12.1 ± 0.5 ?

Minor reason - shows whether result is statistics limited Major reason - to enable combination of this result with others that share a systematic uncertainty

Errors with Correlations

What is the error on $f(x, y)$?

For undergraduates

$$
\sigma_f^2 = \left(\frac{\partial f}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2
$$

For graduates

$$
\sigma_f^2 = \left(\frac{\partial f}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2 + 2\rho \left(\frac{\partial f}{\partial x}\right) \left(\frac{\partial f}{\partial y}\right) \sigma_x \sigma_y
$$

If there are several functions and several variables this generalises to

$$
\mathbf{V}_f = \tilde{\mathbf{G}} \mathbf{V}_x \mathbf{G} \tag{1}
$$

where V_f and V_\times are the covariance matrices and $G_{ij}=\frac{\partial f_j}{\partial x_i}$ ∂xⁱ

Example - the straight line fit

Note: for compatibility with traditional usage, x is now called y

$$
y = mx + c
$$

Equation [1](#page-2-0) gives the usual errors, and also the correlation: $V_m = \frac{\sigma^2}{M\sqrt{v^2}}$ $\frac{\sigma^2}{N(\overline{x^2}-\overline{x}^2)}$ $V_c = \frac{\sigma^2\overline{x}^2}{N(\overline{x^2}-\overline{x})^2}$ $\frac{\sigma^2 \overline{x^2}}{N(\overline{x^2}-\overline{x}^2)}$ Cov = $-\frac{\overline{x}\sigma^2}{N(\overline{x^2}-\overline{x}^2)}$ $\frac{\overline{x}\sigma^2}{N(\overline{x^2}-\overline{x}^2)}$ $\rho=-\frac{\overline{x}}{\sqrt{\overline{x}^2}}$

in this example, $m = 0.105 \pm 0.011$, $c = 0.983 \pm 0.068$, $\rho = -0.886$

Even though the y_i are independent, m and c are correlated

Example - the straight line fit

Correlation $\rho = -\frac{\overline{x}}{\sqrt{\overline{x^2}}}$

Fluctuations in measurement(s) affect slope and intercept in opposite directions.

Correlation vanishes if $\overline{x} = 0$. Or write $y = m(x - \overline{x}) + c'$

Re-parametrising to kill correlation is sometimes worth doing.

Example - the straight line fit Continued

Extrapolation of a straight line - what is y at $x = 20$?

 $y = 0.983 + 20 \times 0.105$ $y = 0.9$ os + 20 × 0.105
Error from $\sqrt{0.068^2 + 20^2 \times 0.011^2} = 0.23$ Wrong Correct Error from √ $0.068^2 + 20^2 \times 0.011^2 - 2 \times 0.886 \times 20 \times 0.068 \times 0.011 = 0.16$

Building a correlation matrix

or covariance matrix, or variance matrix...

Matrix element
$$
V_{ij} = \langle (x_i - \langle x_i \rangle)(x_j - \langle x_j \rangle) \rangle = \langle x_i x_j \rangle - \langle x_i \rangle \langle x_j \rangle
$$

Given correlated x_1 and x_2 , model as $x_1 = y_1 + z$, $x_2 = y_2 + z$, where y_1, y_2, z independent with errors σ_1, σ_2, S .

$$
V_{11} = \langle (y_1 + z)(y_1 + z) \rangle - \langle (y_1 + z) \rangle^2 = \sigma_1^2 + S^2.
$$

\n
$$
V_{22} \text{ similar}
$$

\n
$$
V_{12} = V_{21} = \langle (y_1 + z)(y_2 + z) \rangle - \langle (y_1 + z) \rangle \langle (y_2 + z) \rangle = S^2
$$

$$
\mathbf{V} = \begin{pmatrix} \sigma_1^2 + S^2 & S^2 \\ S^2 & \sigma_2^2 + S^2 \end{pmatrix}
$$

For more variables, build up larger matrix where off-diagonal elements come from shared features, on-diagonal gives total variance.

Building a correlation matrix continued

Suppose experiment A measures y_1 and y_2 with shared systematic uncertainty S_A , and experiment B measures y_3 and y_4 with shared S_B

$$
\mathbf{V} = \begin{pmatrix} \sigma_1^2 + S_A^2 & S_A^2 & 0 & 0 \\ S_A^2 & \sigma_2^2 + S_A^2 & 0 & 0 \\ 0 & 0 & \sigma_3^2 + S_B^2 & S_B^2 \\ 0 & 0 & S_B^2 & \sigma_4^2 + S_B^2 \end{pmatrix}
$$

Similar for (more common) shared multiplicative uncertainty - (e.g. efficiency, luminosity, normalisation...) $y_1 \pm \sigma_1 \pm S_1$ and $y_2 \pm \sigma_2 \pm S_2$ with $S_1 = \xi y_1, S_2 = \xi y_2$

$$
\textbf{V}=\begin{pmatrix}\sigma_1^2+S_1^2 & S_1S_2 \\ S_1S_2 & \sigma_2^2+S_2^2\end{pmatrix}
$$

PDG, HFLAV and similar groups do this on an industrial scale

Independent measurements

Maximum Likelihood
$$
\rightarrow
$$
 Least Squares \rightarrow minimise $\chi^2 = \sum_i \left(\frac{y_i - f(x_i)}{\sigma_i} \right)^2$

What if the y_i are not independent but correlated with non-diagonal covariance matrix V_v ? Change to some $y' = Ry$ with rotation matrix R such that all $Cov(y'_i, y'_j) = 0$ $1/2$

V' diagonal by construction.
$$
\mathbf{V'}^{-1} = \begin{pmatrix} 1/\sigma_1'^2 & 0 & 0 & \dots \\ 0 & 1/\sigma_2'^2 & 0 & \dots \\ 0 & 0 & 1/\sigma_3'^2 & \dots \end{pmatrix}
$$

 $\mathsf{y}'=\mathsf{R}\mathsf{y}$ so $\mathsf{V}'=[\tilde{R} V^{-1}R]^{-1}$ and $\chi^2 = (\tilde{y}' - \tilde{f}')V'^{-1}(y' - f') = (\tilde{y} - \tilde{f})V^{-1}(y - f)$ Forget about the primed system and get $\chi^2 = (\tilde{\textbf{y}} - \tilde{\textbf{f}}) \textbf{V}^{-1} (\textbf{y} - \textbf{f})$

How does this all link to the Hessian matrix? (1)

$$
\frac{\partial^2 \ln L}{\partial a_i \partial a_j}
$$

 \hat{a}_1 and \hat{a}_2 are functions of the data: maximise $\ln L(a_1, a_2) = \sum_i \ln P(x_i; a_1, a_2)$

That means $\frac{\partial \ln L}{\partial a_i}\vert_{a=\hat{a}} = 0$ $\forall i$

Expanding this to first order about a^{true} , as ∂ ln L $\frac{\partial \ln L}{\partial a_1}\vert_{a=a^{\text{true}}} + \frac{\partial^2 \ln L}{\partial a_1^2}$ $\frac{\partial^2 \ln L}{\partial a_1^2}(\hat{a_1}-a_1^{true})+\frac{\partial^2 \ln L}{\partial a_1\partial a_2}$ $\frac{\partial \ln L}{\partial \ln L}$ $tan \neq \frac{\partial^2 \ln L}{\partial L}$ $\frac{\partial^2 \ln L}{\partial a_1 \partial a_2}(\hat{a_2} - a_2^{\text{true}}) = 0$ $\frac{\partial \ln L}{\partial a_2}\vert_{\bm{a}=\bm{a}^{true}} + \frac{\partial^2 \ln L}{\partial a_1 \partial a_2}$ $\frac{\partial^2 \ln L}{\partial a_1 \partial a_2}(\hat{a_1} - a_1^{\textrm{true}}) + \frac{\partial^2 \ln L}{\partial^2 a_2}$ $\frac{\partial^2 \ln L}{\partial^2 a_2}(\hat{a_2}-\hat{a}^{\text{true}}_2)=0$ So $\mathsf{H}(\mathsf{\hat{a}} - \mathsf{a}^{\mathsf{true}}) = -\frac{\partial \ln L}{\partial \mathsf{a}}$ $\frac{|\ln L|}{\partial \textbf{a}}|_{\textbf{a}= \textbf{a} }$ true $\textbf{a} - \textbf{a} ^\textsf{true} = - \textsf{H} ^{-1} \frac{\partial \ln L}{\partial \textbf{a}}|_{\textbf{a}= \textbf{a} ^\textsf{true}}$

Now apply Equation 1 with $G = H^{-1}$

We need to know the variance matrix **V** of the gradients $\frac{\partial \ln L}{\partial a_i}|_{a=a^{true}}$ This is $\left\langle \frac{\partial \ln L}{\partial a_i} \right\rangle$ ∂aⁱ <u>∂ In L</u> ∂a^j $\left\langle \frac{\partial \ln L}{\partial a_1} \right\rangle$ ∂a, $\frac{\partial \ln L}{\partial \ln L}$ ∂a^j). evaluated at $\mathbf{a} = \mathbf{a}^{\text{true}}$ Unitarity says $\int ... \int L dx_1 dx_2 ... dx_N = 1$, and differentiating wrt any a_i must give zero, so $\int ... \int \frac{\partial L}{\partial a}$ $\frac{\partial L}{\partial a_i}dx_1 dx_2...dx_N = \int ... \int L \frac{\partial \ln L}{\partial a_i}$ $\frac{\partial \ln L}{\partial a_i} dx_1 dx_2 ... dx_N = \left\langle \frac{\partial \ln L}{\partial a_i} \right\rangle$ ∂a, $\big\rangle = 0$ Differentiating again, and using the $\frac{\partial \ln L}{\partial a} = \frac{1}{L}$ L ∂L $\frac{\partial L}{\partial a}$ switch, gives $\frac{\partial \ln L}{\partial \ln L}$ ∂a^j ∂ ln L ∂a^k $\left\langle \frac{\partial^2 \ln L}{\partial a_1 \partial a_2} \right\rangle$ ∂aj∂a^k \setminus Now we approximate the expectation values by actual values we see and get $V = -H$ and Equation 1 gives $V_a = -H^{-1}$

Averaging **BLUE**

Given several (correlated) results y_i , how do you average them? Best Linear Unbiased Estimator (L Lyons et al, NIM A270 110 (1988)) Minimise $\chi^2 = \sum_{i,j} (y_i - \hat{y}) V_{ij}^{-1} (y_j - \hat{y})$ $\hat{y}\sum_{i,j}V_{ij}^{-1}=\sum_{i,j}V_{ij}^{-1}y_j$ Write as $\hat{y} = \sum_i w_i y_i$ with $w_i = \frac{\sum_j V_{ij}^{-1}}{\sum_i V_{-i}^{-1}}$ Σ ij $_{i,j}$ V $_{\it ij}^{-1}$ Error on \hat{y} given by $\sqrt{\tilde{\textbf{w}}\textbf{V}}$ w Notice that $\sum_i w_i = 1$ which is intuitive Notice that some w_i may be negative (if correlations are large) which is counterintuitve

This assumes the elements of \bf{V} are known exactly. If not, care needed.

Equivalent alternative for additive systematics

Fit parameters using several datasets each with some systematic additive uncertainty S_i

Method 1 For $i = 1...n$ experiments, construct large covariance matrix **V** with \mathcal{S}^2_j off-diagonal elements and minimise χ^2 Method 2 introduce explicit offsets.

 $y_{ij}' = y_{ij} + \xi_j$ for value i of experiment j . ξ_j Gaussian with mean 0, sd S_j , included in χ^2

Fit the ξ_i together with the parameter(s) of interest. Variance matrix larger but now diagonal.

Roger Barlow (Aachen Virtual Statistics) [Systematics 2](#page-0-0) 16th March 2023 13/17

Which method should you use?

Method 2

Downside: *n* more parameters to fit

Upside (1): avoids matrix inversion

Upside (2): extracts the factors which can be useful to check behaviour

Method 2

Downside: *n* more parameters to fit

Upside (1): avoids matrix inversion

Upside (2): extracts the factors which can be useful to check behaviour These two methods are actually (surprisingly!) equivalent

R.B. Combining experiments with systematic errors. NIM A987 164864 (2021)

Also Method 2 with multiplicative errors applied to prediction avoids 'D'Agostini bias' (G. D'Agostini NIM A346 306 (1994)) Adjust parameter(s) *a* to minimise $\chi^2=(\mathbf{\tilde{y}}-\mathbf{\tilde{f}}(x;\boldsymbol{a}))\mathbf{V}^{-1}(\mathbf{y}-\mathbf{f}(x;\boldsymbol{a}))$ Bias possible if V includes normalising systematic errors: $\mathcal{S}_i = f\mathcal{Y}_i$ so increasing value increases error and lowers χ^2 Indicates separate fit to systematic factors is preferable in some cases

Nuisance Parameters I

Profile Likelihood - motivation (not very rigorous)

You have a 2D likelihood plot with axes a_1 and a_2 . You are interested in a_1 but not in a_2 ('Nuisance parameter') Different values of a_2 give different results (central and errors) for a_1 Suppose it is possible to transform to $a_2'(a_1, a_2)$ so L factorises, like the one on the right. $L(a_1, a'_2) = L_1(a_1) L_2(a'_2)$ Whatever the value of a_2' , get same result for a_1 So can present this result for a_1 , independent of anything about a_2' . Path of central a'_2 value as fn of a_1 , is peak - path is same in both plots So no need to factorise explicitly: plot $L(a_1, \hat{a}_2)$ as fn of a_1 and read off 1D values. $\hat{a}_2(a_1)$ is the value of a₂ which maximises ln L for this a₁

Roger Barlow (Aachen Virtual Statistics) [Systematics 2](#page-0-0) 16th March 2023 15/17

Marginalised likelihoods

Instead of profiling, just integrate over a_2 .

Can be very helpful alternative, specially with many nuisance parameters But be aware - this is strictly Bayesian

Frequentists are not allowed to integrate likelihoods wrt the parameter

 $\int P(x; a) dx$ is fine, but $\int P(x; a) da$ is off limits

Reparametrising a_2 (or choosing a different prior) will give different values for a_1 . With a bit of luck, even radical changes in the prior for a_2 will not effect the frequentist result for a_1 .

But don't just leave it to luck. Check and make sure.

Systematic errors can readily be handled - with the help of the correlation matrix and other techniques