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Why do we quote systematic errors separately?

Results are always given like

In conclusion, we have measured m = 12.1± 0.3± 0.4 , where the first
error is statistical and the second is systematic

Or even ‘± statistical, ±systematic, ±luminosity uncertainty, ±theory
uncertainty, ±branching ratio uncertainty’

Why quote them separately?

Why not just 12.1± 0.5?

Minor reason - shows whether result is statistics limited
Major reason - to enable combination of this result with others that share
a systematic uncertainty
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Errors with Correlations

What is the error on f (x , y)?

For undergraduates

σ2f =

(
∂f

∂x

)2

σ2x +

(
∂f

∂y

)2

σ2y

For graduates

σ2f =

(
∂f

∂x

)2

σ2x +

(
∂f

∂y

)2

σ2y + 2ρ

(
∂f

∂x

)(
∂f

∂y

)
σxσy

If there are several functions and several variables this generalises to

Vf = G̃VxG (1)

where Vf and Vx are the covariance matrices and Gij =
∂fj
∂xi
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Example - the straight line fit
Note: for compatibility with traditional usage, x is now called y

y = mx + c

f1 ≡ m = xy−x y

x2−x2
=

∑
(xi−x)yi

N(x2−x2)

f0 ≡ c = y −mx = x2 y−x xy

x2−x2
=

∑
(x2−xix)yi
N(x2−x2)

Vy = σ2I

Gi1 = xi−x
N(x2−x2)

Gi0 = x2−xix
N(x2−x2)

Equation 1 gives the usual errors, and also the correlation:

Vm = σ2

N(x2−x2)
Vc = σ2x2

N(x2−x2)
Cov = − xσ2

N(x2−x2)
ρ = − x√

x2

in this example, m = 0.105± 0.011, c = 0.983± 0.068, ρ = −0.886

Even though the yi are independent, m and c are correlated
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Example - the straight line fit

Correlation ρ = − x√
x2

Fluctuations in measurement(s) affect slope and intercept in opposite
directions.

Correlation vanishes if x = 0. Or write y = m(x − x) + c ′

Re-parametrising to kill correlation is sometimes worth doing.

Roger Barlow (Aachen Virtual Statistics) Systematics 2 16th March 2023 5 / 17



Example - the straight line fit
Continued

Extrapolation of a straight line - what is y at x = 20?

y = 0.983 + 20× 0.105
Error from

√
0.0682 + 202 × 0.0112 = 0.23 Wrong

Correct Error from√
0.0682 + 202 × 0.0112 − 2× 0.886× 20× 0.068× 0.011 = 0.16
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Building a correlation matrix
or covariance matrix, or variance matrix...

Matrix element Vij = 〈(xi − 〈xi 〉)(xj − 〈xj〉)〉 = 〈xixj〉 − 〈xi 〉 〈xj〉

Given correlated x1 and x2, model as x1 = y1 + z , x2 = y2 + z , where
y1, y2, z independent with errors σ1, σ2, S .

V11 = 〈(y1 + z)(y1 + z)〉 − 〈(y1 + z)〉2 = σ21 + S2.
V22 similar
V12 = V21 = 〈(y1 + z)(y2 + z)〉 − 〈(y1 + z)〉 〈(y2 + z)〉 = S2

V =

(
σ21 + S2 S2

S2 σ22 + S2

)
For more variables, build up larger matrix where off-diagonal elements
come from shared features, on-diagonal gives total variance.
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Building a correlation matrix
continued

Suppose experiment A measures y1 and y2 with shared systematic
uncertainty SA, and experiment B measures y3 and y4 with shared SB

V =


σ21 + S2

A S2
A 0 0

S2
A σ22 + S2

A 0 0
0 0 σ23 + S2

B S2
B

0 0 S2
B σ24 + S2

B


Similar for (more common) shared multiplicative uncertainty - (e.g.
efficiency, luminosity, normalisation...)
y1 ± σ1 ± S1 and y2 ± σ2 ± S2 with S1 = ξy1,S2 = ξy2

V =

(
σ21 + S2

1 S1S2
S1S2 σ22 + S2

2

)
PDG, HFLAV and similar groups do this on an industrial scale
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Using the matrix

Independent measurements

Maximum Likelihood → Least Squares → minimise χ2 =
∑

i

(
yi−f (xi )

σi

)2
What if the yi are not independent but correlated with non-diagonal
covariance matrix Vy?
Change to some y′ = Ry with rotation matrix R such that all
Cov(y ′i , y

′
j ) = 0

V’ diagonal by construction. V′−1 =


1/σ′21 0 0 ...

0 1/σ′22 0 ...
0 0 1/σ′23 ...
...


y′ = Ry so V′ = [R̃V−1R]−1 and
χ2 = (ỹ′ − f̃ ′)V′−1(y′ − f ′) = (ỹ − f̃)V−1(y − f)
Forget about the primed system and get χ2 = (ỹ − f̃)V−1(y − f)
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How does this all link to the Hessian matrix? (1)

∂2 ln L

∂ai∂aj

â1 and â2 are functions of the data: maximise
ln L(a1, a2) =

∑
i lnP(xi ; a1, a2)

That means ∂ ln L
∂ai
|a=â = 0 ∀i

Expanding this to first order about atrue , as
∂ ln L
∂a1
|a=atrue + ∂2 ln L

∂a21
(â1 − atrue1 ) + ∂2 ln L

∂a1∂a2
(â2 − atrue2 ) = 0

∂ ln L
∂a2
|a=atrue + ∂2 ln L

∂a1∂a2
(â1 − atrue1 ) + ∂2 ln L

∂2a2
(â2 − atrue2 ) = 0

So H(â− atrue) = −∂ ln L
∂a |a=atrue and â− atrue = −H−1 ∂ ln L∂a |a=atrue

Now apply Equation 1 with G = H−1
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How does this all link to the Hessian matrix? (2)

We need to know the variance matrix V of the gradients ∂ ln L
∂ai
|a=atrue

This is
〈
∂ ln L
∂ai

∂ ln L
∂aj

〉
−
〈
∂ ln L
∂ai

〉〈
∂ ln L
∂aj

〉
. evaluated at a = atrue

Unitarity says
∫
...
∫
Ldx1 dx2 ...dxN = 1, and differentiating wrt any ai

must give zero, so∫
...
∫

∂L
∂ai

dx1 dx2 ...dxN =
∫
...
∫
L∂ ln L∂ai

dx1 dx2 ...dxN =
〈
∂ ln L
∂ai

〉
= 0

Differentiating again, and using the ∂ ln L
∂a = 1

L
∂L
∂a switch, gives〈

∂ ln L
∂aj

∂ ln L
∂ak

〉
= −

〈
∂2 ln L
∂aj∂ak

〉
Now we approximate the expectation values by actual values we see and
get V = −H
and Equation 1 gives Vâ = −H−1
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Averaging
BLUE

Given several (correlated) results yi , how do you average them?
Best Linear Unbiased Estimator (L Lyons et al, NIM A270 110 (1988))
Minimise χ2 =

∑
i ,j(yi − ŷ)V−1ij (yj − ŷ)

ŷ
∑

i ,j V
−1
ij =

∑
i ,j V

−1
ij yj

Write as ŷ =
∑

i wiyi with wi =
∑

j V
−1
ij∑

i,j V
−1
ij

Error on ŷ given by
√
w̃Vw

Notice that
∑

i wi = 1 which is intuitive
Notice that some wi may be negative (if correlations are large) which is
counterintuitve

This assumes the elements of V are known exactly. If not, care needed.
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Equivalent alternative for additive systematics

Fit parameters using several datasets each with some systematic additive
uncertainty Sj

Method 1 For j = 1...n experiments, construct large covariance matrix V
with S2

j off-diagonal elements and minimise χ2

Method 2 introduce explicit offsets.
y ′ij = yij + ξj for value i of experiment j . ξj Gaussian with mean 0, sd Sj ,

included in χ2

Fit the ξi together with the parameter(s) of interest. Variance matrix
larger but now diagonal.
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Which method should you use?

Method 2
Downside: n more parameters to fit
Upside (1): avoids matrix inversion
Upside (2): extracts the factors which can be useful to check behaviour

These two methods are actually (surprisingly!) equivalent
R.B. Combining experiments with systematic errors. NIM A987 164864
(2021)
Also Method 2 with multiplicative errors applied to prediction avoids
‘D’Agostini bias’ ( G. D’Agostini NIM A346 306 (1994) )
Adjust parameter(s) a to minimise χ2 = (ỹ − f̃(x ; a))V−1(y − f(x ; a))
Bias possible if V includes normalising systematic errors:
Si = fyi so increasing value increases error and lowers χ2

Indicates separate fit to systematic factors is preferable in some cases
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Bias possible if V includes normalising systematic errors:
Si = fyi so increasing value increases error and lowers χ2

Indicates separate fit to systematic factors is preferable in some cases

Roger Barlow (Aachen Virtual Statistics) Systematics 2 16th March 2023 14 / 17



Nuisance Parameters I
Profile Likelihood - motivation (not very rigorous)

You have a 2D likelihood plot with axes a1 and a2. You are interested in a1 but
not in a2 (’Nuisance parameter’)
Different values of a2 give different results (central and errors) for a1
Suppose it is possible to transform to a′2(a1, a2) so L factorises, like the one on
the right. L(a1, a

′
2) = L1(a1)L2(a′2)

Whatever the value of a′2, get same result for a1
So can present this result for a1, independent of anything about a′2.
Path of central a′2 value as fn of a1, is peak - path is same in both plots

So no need to factorise explicitly: plot L(a1, ˆ̂a2) as fn of a1 and read off 1D values.
ˆ̂a2(a1) is the value of a2 which maximises ln L for this a1
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Nuisance Parameters 2
Marginalised likelihoods

Instead of profiling, just integrate over a2.
Can be very helpful alternative, specially with many nuisance parameters
But be aware - this is strictly Bayesian

Frequentists are not allowed to integrate likelihoods wrt the parameter∫
P(x ; a) dx is fine, but

∫
P(x ; a) da is off limits

Reparametrising a2 (or choosing a different prior) will give different values
for a1. With a bit of luck, even radical changes in the prior for a2 will not
effect the frequentist result for a1.
But don’t just leave it to luck. Check and make sure.
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Conclusions

Systematic errors can readily be handled - with the help of the correlation
matrix and other techniques
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