Systematic Errors (2) Working with Systematic Errors

Roger Barlow Huddersfield University

Aachen Online Statistics School

16th March 2023

Results are always given like

In conclusion, we have measured $m=12.1\pm0.3\pm0.4$, where the first error is statistical and the second is systematic

Or even ' \pm statistical, $\pm systematic,$ $\pm luminosity$ uncertainty, $\pm theory$ uncertainty, $\pm branching$ ratio uncertainty'

Why quote them separately?

Why not just 12.1 ± 0.5 ?

Minor reason - shows whether result is statistics limited Major reason - to enable combination of this result with others that share a systematic uncertainty

Errors with Correlations

What is the error on f(x, y)?

For undergraduates

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2$$

For graduates

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2 + 2\rho \left(\frac{\partial f}{\partial x}\right) \left(\frac{\partial f}{\partial y}\right) \sigma_x \sigma_y$$

If there are several functions and several variables this generalises to

$$\mathbf{V}_f = \tilde{\mathbf{G}} \mathbf{V}_{\mathbf{x}} \mathbf{G} \tag{1}$$

where V_f and V_x are the covariance matrices and $G_{ij} = \frac{\partial t_j}{\partial x_i}$

Example - the straight line fit

Note: for compatibility with traditional usage, x is now called y

$$y = mx + c$$

 $V_m = \frac{\sigma^2}{N(\overline{x^2} - \overline{x}^2)} \qquad V_c = \frac{\sigma^2 \overline{x^2}}{N(\overline{x^2} - \overline{x}^2)} \qquad \text{Cov} = -\frac{\overline{x}\sigma^2}{N(\overline{x^2} - \overline{x}^2)} \qquad \rho = -\frac{\overline{x}}{\sqrt{\overline{x^2}}}$

in this example, $\textit{m} = 0.105 \pm 0.011, \textit{c} = 0.983 \pm 0.068, \rho = -0.886$

Even though the y_i are independent, m and c are correlated

Example - the straight line fit

Correlation $\rho = -\frac{\overline{x}}{\sqrt{\overline{x^2}}}$

Fluctuations in measurement(s) affect slope and intercept in opposite directions.

Correlation vanishes if $\overline{x} = 0$. Or write $y = m(x - \overline{x}) + c'$

Re-parametrising to kill correlation is sometimes worth doing.

Example - the straight line fit Continued

Extrapolation of a straight line - what is y at x = 20?

 $y = 0.983 + 20 \times 0.105$ Error from $\sqrt{0.068^2 + 20^2 \times 0.011^2} = 0.23$ Wrong Correct Error from $\sqrt{0.068^2 + 20^2 \times 0.011^2 - 2 \times 0.886 \times 20 \times 0.068 \times 0.011} = 0.16$

Building a correlation matrix

or covariance matrix, or variance matrix...

$$\mathsf{Matrix} \hspace{0.1 cm} \mathsf{element} \hspace{0.1 cm} V_{ij} = \langle (x_i - \langle x_i \rangle)(x_j - \langle x_j \rangle) \rangle = \langle x_i x_j \rangle - \langle x_i \rangle \, \langle x_j \rangle$$

Given correlated x_1 and x_2 , model as $x_1 = y_1 + z$, $x_2 = y_2 + z$, where y_1, y_2, z independent with errors σ_1, σ_2, S .

$$V_{11} = \langle (y_1 + z)(y_1 + z) \rangle - \langle (y_1 + z) \rangle^2 = \sigma_1^2 + S^2.$$

$$V_{22} \text{ similar}$$

$$V_{12} = V_{21} = \langle (y_1 + z)(y_2 + z) \rangle - \langle (y_1 + z) \rangle \langle (y_2 + z) \rangle = S^2$$

$$\mathbf{V} = egin{pmatrix} \sigma_1^2 + S^2 & S^2 \ S^2 & \sigma_2^2 + S^2 \end{pmatrix}$$

For more variables, build up larger matrix where off-diagonal elements come from shared features, on-diagonal gives total variance.

Building a correlation matrix continued

Suppose experiment A measures y_1 and y_2 with shared systematic uncertainty S_A , and experiment B measures y_3 and y_4 with shared S_B

$$\mathbf{V} = \begin{pmatrix} \sigma_1^2 + S_A^2 & S_A^2 & 0 & 0 \\ S_A^2 & \sigma_2^2 + S_A^2 & 0 & 0 \\ 0 & 0 & \sigma_3^2 + S_B^2 & S_B^2 \\ 0 & 0 & S_B^2 & \sigma_4^2 + S_B^2 \end{pmatrix}$$

Similar for (more common) shared multiplicative uncertainty - (e.g. efficiency, luminosity, normalisation...) $y_1 \pm \sigma_1 \pm S_1$ and $y_2 \pm \sigma_2 \pm S_2$ with $S_1 = \xi y_1, S_2 = \xi y_2$

$$\mathbf{V} = \begin{pmatrix} \sigma_1^2 + S_1^2 & S_1 S_2 \\ S_1 S_2 & \sigma_2^2 + S_2^2 \end{pmatrix}$$

PDG, HFLAV and similar groups do this on an industrial scale

Independent measurements

Maximum Likelihood
$$\rightarrow$$
 Least Squares \rightarrow minimise $\chi^2 = \sum_i \left(\frac{y_i - f(x_i)}{\sigma_i}\right)^2$

What if the y_i are not independent but correlated with non-diagonal covariance matrix V_y ? Change to some $\mathbf{y}' = \mathbf{R}\mathbf{y}$ with rotation matrix \mathbf{R} such that all $Cov(y'_i, y'_j) = 0$ $\begin{pmatrix} 1/\sigma_1'^2 & 0 & 0 & \dots \\ 0 & 1/\sigma_1'^2 & 0 & \dots \end{pmatrix}$

 $\mathbf{V'} \text{ diagonal by construction. } \mathbf{V'}^{-1} = \begin{pmatrix} 1/\sigma_1'^2 & 0 & 0 & \dots \\ 0 & 1/\sigma_2'^2 & 0 & \dots \\ 0 & 0 & 1/\sigma_3'^2 & \dots \\ \dots & & & \end{pmatrix}$ $\mathbf{v'} = \mathbf{R} \mathbf{v} \text{ so } \mathbf{V'} = [\tilde{R}V^{-1}R]^{-1} \text{ and }$

 $\mathbf{y}' = \mathbf{R}\mathbf{y}$ so $\mathbf{V}' = [RV^{-1}R]^{-1}$ and $\chi^2 = (\mathbf{\tilde{y}}' - \mathbf{\tilde{f}}')\mathbf{V}'^{-1}(\mathbf{y}' - \mathbf{f}') = (\mathbf{\tilde{y}} - \mathbf{\tilde{f}})\mathbf{V}^{-1}(\mathbf{y} - \mathbf{f})$ Forget about the primed system and get $\chi^2 = (\mathbf{\tilde{y}} - \mathbf{\tilde{f}})\mathbf{V}^{-1}(\mathbf{y} - \mathbf{f})$

How does this all link to the Hessian matrix? (1)

$$\frac{\partial^2 \ln L}{\partial a_i \partial a_j}$$

 $\hat{a_1}$ and $\hat{a_2}$ are functions of the data: maximise $\ln L(a_1, a_2) = \sum_i \ln P(x_i; a_1, a_2)$

That means $\frac{\partial \ln L}{\partial a_i}|_{a=\hat{a}} = 0 \qquad \forall i$

Expanding this to first order about a^{true} , as $\frac{\partial \ln L}{\partial a_1}|_{a=a^{true}} + \frac{\partial^2 \ln L}{\partial a_1^2} (\hat{a}_1 - a_1^{true}) + \frac{\partial^2 \ln L}{\partial a_1 \partial a_2} (\hat{a}_2 - a_2^{true}) = 0$ $\frac{\partial \ln L}{\partial a_2}|_{a=a^{true}} + \frac{\partial^2 \ln L}{\partial a_1 \partial a_2} (\hat{a}_1 - a_1^{true}) + \frac{\partial^2 \ln L}{\partial^2 a_2} (\hat{a}_2 - a_2^{true}) = 0$ So $\mathbf{H}(\hat{\mathbf{a}} - \mathbf{a}^{true}) = -\frac{\partial \ln L}{\partial a_1}|_{a=a^{true}}$ and $\hat{\mathbf{a}} - \mathbf{a}^{true} = -\mathbf{H}^{-1}\frac{\partial \ln L}{\partial a_1}|_{a=a^{true}}|_{a=a^{true}}$

Now apply Equation 1 with $\mathbf{G} = \mathbf{H}^{-1}$

We need to know the variance matrix **V** of the gradients $\frac{\partial \ln L}{\partial a_i}|_{a=a^{true}}$ This is $\left\langle \frac{\partial \ln L}{\partial a_i} \frac{\partial \ln L}{\partial a_i} \right\rangle - \left\langle \frac{\partial \ln L}{\partial a_i} \right\rangle \left\langle \frac{\partial \ln L}{\partial a_i} \right\rangle$. evaluated at $\mathbf{a} = \mathbf{a}^{true}$ Unitarity says $\int \dots \int L dx_1 dx_2 \dots dx_N = 1$, and differentiating wrt any a_i must give zero, so

 $\int \dots \int \frac{\partial L}{\partial a_i} dx_1 dx_2 \dots dx_N = \int \dots \int L \frac{\partial \ln L}{\partial a_i} dx_1 dx_2 \dots dx_N = \left\langle \frac{\partial \ln L}{\partial a_i} \right\rangle = 0$ Differentiating again, and using the $\frac{\partial \ln L}{\partial a} = \frac{1}{L} \frac{\partial L}{\partial a}$ switch, gives $\left\langle \frac{\partial \ln L}{\partial a_j} \frac{\partial \ln L}{\partial a_k} \right\rangle = -\left\langle \frac{\partial^2 \ln L}{\partial a_j \partial a_k} \right\rangle$ Now we approximate the expectation values by actual values we see and get $\mathbf{V} = -\mathbf{H}$ and Equation 1 gives $\mathbf{V}_{\hat{\mathbf{a}}} = -\mathbf{H}^{-1}$

Averaging BLUE

Given several (correlated) results y_i , how do you average them? Best Linear Unbiased Estimator (L Lyons et al, NIM A270 110 (1988)) Minimise $\chi^2 = \sum_{i,j} (y_i - \hat{y}) V_{ij}^{-1} (y_j - \hat{y})$ $\hat{y} \sum_{i,i} V_{ii}^{-1} = \sum_{i,i} V_{ii}^{-1} y_i$ Write as $\hat{y} = \sum_{i} w_i y_i$ with $w_i = \frac{\sum_{j} V_{ij}^{-1}}{\sum_{i} V_{i}^{-1}}$ Error on \hat{y} given by $\sqrt{\tilde{w}Vw}$ Notice that $\sum_{i} w_{i} = 1$ which is intuitive Notice that some w_i may be negative (if correlations are large) which is counterintuitve

This assumes the elements of V are known exactly. If not, care needed.

Equivalent alternative for additive systematics

Fit parameters using several datasets each with some systematic additive uncertainty S_j

Method 1 For j = 1...n experiments, construct large covariance matrix V with S_j^2 off-diagonal elements and minimise χ^2 **Method 2** introduce explicit offsets.

 $y_{ij}'=y_{ij}+\xi_j$ for value i of experiment $j.~\xi_j$ Gaussian with mean 0, sd $S_j,$ included in χ^2

Fit the ξ_i together with the parameter(s) of interest. Variance matrix larger but now diagonal.

Roger Barlow (Aachen Virtual Statistics)

Which method should you use?

Method 2

Downside: *n* more parameters to fit

Upside (1): avoids matrix inversion

Upside (2): extracts the factors which can be useful to check behaviour

Method 2

Downside: *n* more parameters to fit

Upside (1): avoids matrix inversion

Upside (2): extracts the factors which can be useful to check behaviour These two methods are actually (surprisingly!) equivalent

R.B. Combining experiments with systematic errors. NIM **A987** 164864 (2021)

Also Method 2 with multiplicative errors applied to prediction avoids 'D'Agostini bias' (G. D'Agostini NIM **A346** 306 (1994)) Adjust parameter(s) *a* to minimise $\chi^2 = (\tilde{\mathbf{y}} - \tilde{\mathbf{f}}(x; a))\mathbf{V}^{-1}(\mathbf{y} - \mathbf{f}(x; a))$ Bias possible if **V** includes normalising systematic errors: $S_i = fy_i$ so increasing value increases error and lowers χ^2 Indicates separate fit to systematic factors is preferable in some cases

Nuisance Parameters I

Profile Likelihood - motivation (not very rigorous)

You have a 2D likelihood plot with axes a_1 and a_2 . You are interested in a_1 but not in a_2 ('Nuisance parameter') Different values of a_2 give different results (central and errors) for a_1 Suppose it is possible to transform to $a'_2(a_1, a_2)$ so L factorises, like the one on the right. $L(a_1, a'_2) = L_1(a_1)L_2(a'_2)$ Whatever the value of a'_2 , get same result for a_1 So can present this result for a_1 , independent of anything about a'_2 . Path of central a'_2 value as fn of a_1 , is peak - path is same in both plots So no need to factorise explicitly: plot $L(a_1, \hat{a}_2)$ as fn of a_1 and read off 1D values. $\hat{a}_2(a_1)$ is the value of a_2 which maximises ln L for this a_1 Marginalised likelihoods

Instead of profiling, just integrate over a_2 .

Can be very helpful alternative, specially with many nuisance parameters But be aware - this is strictly Bayesian

Frequentists are not allowed to integrate likelihoods wrt the parameter

 $\int P(x; a) dx$ is fine, but $\int P(x; a) da$ is off limits

Reparametrising a_2 (or choosing a different prior) will give different values for a_1 . With a bit of luck, even radical changes in the prior for a_2 will not effect the frequentist result for a_1 .

But don't just leave it to luck. Check and make sure.

Systematic errors can readily be handled - with the help of the correlation matrix and other techniques