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Part 1

What is Probability?
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What is probability?

We all think we know, but...

From any Statistics101 Exam paper

Q1 What is meant by the probability P(A) of some event A?
[1]

Please write down (or type, or whatever) your answer
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4 possible answers

1 P(A) is a real number between 0 and 1, obeying certain mathematical
rules

2 P(A) is some property of A: the larger it is, the more A happens with
limits at 1 (never) and 1 (always)

3 P(A) is the limit NA/NTotal , as NTotal → ∞
4 P(A) expresses my belief in A, and determines the odds I will accept

on a bet that A is true.

All are possible correct answers, though only (3) and (4) are relevant
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Mathematical

Kolmogorov Axioms:

For all A ⊂ S
PA ≥ 0
PS = 1
P(A∪B) = PA + PB if A ∩ B = ϕ and A,B ⊂ S

From these simple axioms a complete and complicated structure can be
erected. E.g. show PA ≤ 1....

But!!!

This says nothing about what PA actually means.

Kolmogorov had frequentist probability in mind, but these axioms apply to
any definition.
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Classical
or Real probability

Evolved during the 18th-19th century
Developed (Pascal, Laplace and
others) to serve the gambling
industry.

Two sides to a coin - probability 1
2

for each face

Likewise 52 cards in a pack, 6 sides
to a dice...

Answers questions like ’What is the
probability of rolling more than 10
with 2 dice?’

Problem: can’t be applied when symmetry breaks, or to continuous
variables. Different answers using θ or sinθ. (Bertrand’s paradoxes.)
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Frequentist
The usual definition taught in schools and undergrad classes

PA = limN→∞
NA
N

N is the total number of events in
the ensemble (or collective)

The probability of a coin landing heads up is 1
2 because if you toss a coin

1000 times, one side will come down ∼ 500 times.

The lifetime of a muon is 2.2µs because if you take 1000 muons and wait
2.2µs, then ∼ 368 will remain.

Important

PA is not just a property of A, but a joint property of A and the ensemble.
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Problems (?) for Frequentist Probability

There may be several ensembles
Suppose 50% of US voters support
Trump.
This varies geographically: In Texas the
support is 60%.
It varies demographically: only 40% of
college graduates support him
All numbers are fictitious!!

Hank is an American graduate living in
Texas.
What is the probability that Hank
supports Trump?
All 3 numbers are good answers

There may be no Ensemble
What is the probability that there is a
SUSY particle with mass below 2 TeV?

There either is or isn’t. It is either 0 or 1

CMS says MH = 125.35± 0.15 GeV.
What is the probability that
125.20 < MH < 125.50 GeV?

Either it is or it isn’t. P = 1 or P = 0.

What is the probability that it will rain
tomorrow?

There is only one tomorrow. It will
either rain or not. Prain is either 0 or 1
and we won’t know which until
tomorrow gets here
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From Probability to Confidence

Tomorrow, here in Hamburg, it either will rain, or it
won’t rain.
Prain is either 0 or 1.
There is only one tomorrow

Suppose the weather forecast says it will rain (actually it does).
Suppose I have checked the track-record of this forecast (actually I
havn’t), and they are right 90% of the time
The statement ‘It will rain tomorrow’ has a 90% probability of being true.
I say that it will rain tomorrow, with 90% confidence.

Definition

A is true at X% confidence if it is a member of an ensemble of statements
of which at least X% are true

What is a measurement? What does MH = 125.35± 0.15 mean?

MH ∈ [125.20, 125.50] with 68% probabiity. NO
MH ∈ [125.20, 125.50] with 68% confidence. YES
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The small print

Note that ‘at least’

1 Higher confidence statements embrace lower. If something is true at
95% confidence it is true at 90% confidence

2 It lets us handle cases with discrete data where an exact match may
not be possible. A Poisson distribution with a mean of 3.2 has an
89% probability of generating 5 or less events, and 96% of generating
6 or less1 . If you require the 90% confidence limit it is 6 events.

3 It lets us handle composite hypotheses. If an upper limit rules out a
branching ratio of Br = 0.02 at 90% confidence, it rules out
Br ≥ 0.02 at 90% confidence.

The actual fraction of cases is called the coverage
It generally depends on some parameter of the composite hypothesis - it’s
a function not a simple number
Overcoverage is allowed (but inefficient)
Undercoverage is not

1Details later in the lecture, though they’re not necessary.
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Bayes’ theorem

Bayes’ Theorem applies (and is useful) in any probability model
Conditional Probability: P(A|B): probability for A, given that B is true.
Example: P(♣A) = 1

52 and P(♣A|Black) = 1
26

Theorem

P(A|B) = P(B|A)
P(B)

× P(A)

Proof.

The probabiilty that A and B are both true can be written in two ways
P(A|B)× P(B) = P(A&B) = P(B|A)× P(A)

Throw away middle term and divide by P(B)
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Bayes’ theorem
Examples

Example

P(♣A|Black) = P(Black|♣A)
P(Black) P(♣A) = 1

1
2

× 1
52 = 1

26

Example

Example: In a beam which is 90% π, 10% K , kaons have 95% probability
of giving no Cherenkov signal; pions have 5% probability of giving none.
What is the probability that a particle that gave no signal is a K?
P(K |no signal) = P(no signal |K)

P(no signal) × P(K ) = 0.95
0.95×0.1+0.05×0.9 × 0.1 = 0.68

This uses the (often handy) breakdown:
P(B) = P(B|A)× P(A) + P(B|A)× P(A)
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Bayesian Probability

Probability expresses your belief in A.
1 represents certainty, 0 represents total disbelief

Intermediate values can be calibrated by asking
whether you would prefer to bet on A, or on a
white ball being drawn from an urn containing a
specific mix of white and black balls.

This avoids the limitations of frequentist
probability - coins, dice, kaons, rain tomorrow,
existence of SUSY can all have probabilities.

The Rev Thomas Bayes
(1701-1761)
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Bayesian Probability and Bayes Theorem

Re-write Bayes’ theorem as

P(Theory |Data) = P(Data|Theory)
P(Data)

× P(Theory)

Posterior ∝ Likelihood × Prior

Works sensibly

Data predicted by theory boosts belief - moderated by probability it could
happen anyway

Can be chained.

Posterior from first experiment can be prior for second experiment. And so
on. (Order doesn’t matter)
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From Prior Probability to Prior Distribution

Suppose theory contains parameter a: (mass, coupling, decay rate...)

Prior probability distribution P0(a)∫ a2
a1

P0(a) da is your prior belief that a lies between a1 and a2∫∞
−∞ P0(a) da = 1 (or: your prior belief that the theory is correct)
Generalise the number P(data|theory) to the Likelihood function L(x |a)
Bayes’ Theorem given data x the posterior is : P1(a) ∝ L(x |a)P0(a)

I have measured x = 4.5± 1.0 but I know x < 6.

If range of a infinite, P0(a) may be vanishingly small (’improper prior’). Not a
problem. Just normalise P1(a)
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Shortcomings of Bayesian Probability
Subjective Probability

Your P0(a) and my P0(a) may be different. How can we compare results?

What is the right prior?

Is the wrong question.

‘Principle of ignorance’ - take P(a) constant (uniform distribution) - is a
fraud. Not constant in a2 or

√
a or ln a, which are equally valid parameters.

Jefffreys’ Objective Priors

Choose a flat prior in a transformed variable a′ for which the Fisher

information, −
〈
∂2L(x ;a)

∂a2

〉
is flat. Not universally adopted for various

reasons.

With lots of data, P1(a) decouples from P0(a). But not with little data..

Right thing to do: try several forms of prior and examine spread of results
(‘robustness under choice of prior’)
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Just an example

Measure a = 4.0± 1.0. Likelihood is Gaussian (coming up!)

Taking a prior uniform in a gives a posterior with a mean of 4.0 and a
standard deviation of 1.0 (red curve)

Taking a prior uniform in ln a (so ∝ 1/a for a) shifts the posterior
significantly.
Also shown are 5± 2 (big difference) and 3± 0.5 (very little)
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Summary

There are 4 (at least) definitions of ‘probabiity’.

The Mathematical and the Realist have severe limits. You need to use
Frequentist and/or Bayesian

‘Frequentist versus Bayesian’ is the wrong language. These are not
football teams!

Both have limitations.

Frequentist statistics can lead you into some quite convoluted statements

Bayesian analyses must check for robustness under choice of prior

Be ready to use them both - but always know which you are working with
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Part 2

Probability Distributions
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Basics(1)

Data values can be: integer (discrete) or real (continuous)
(They may also be ranked or categorical but let’s not go there)

Discrete values are described by probability distributions: Pr , pure
dimensionless numbers

Real values are described by probability density functions or pdfs: P(x)
P(x) has dimensions [x ]−1.

∫
P(x) dx or P(x)∆x are pure numbers

Parton Distribution Functions are also Probability Density Functions so no
problem in calling them pdf.

You will also (sometimes) meet the Cumulative Density Function (cdf).
C (x) =

∫ x
−∞ P(x ′) dx ′
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Basics(2)

Unitarity (something has got to happen)
Expressed by

∑
r Pr = 1 or

∫∞
−∞ P(x) dx = 1 as appropriate

The average result, the expectation value
Expressed by ⟨r⟩ =

∑
r rPr or ⟨x⟩ =

∫∞
−∞ xP(x) dx as appropriate

Often denoted by µ

Higher Moments: µn = ⟨rn⟩ or ⟨xn⟩
Central moments: µ′n = ⟨(r − µ)n⟩ or ⟨(x − µ)n⟩
Variance V is just the second central moment..V =

〈
(x − µ)2

〉
Notice V =

〈
(x − µ)2

〉
=

〈
x2
〉
− 2µ ⟨x⟩+ µ2 =

〈
x2
〉
− ⟨x⟩2

V is often written as σ2. (Physicists prefer σ, statisticians prefer V )
Skew γ =

〈
(x − µ)3

〉
/σ3 Curtosis K =

〈
(x − µ)4

〉
/σ4 − 3

Generally for any f (x): ⟨f (x)⟩ =
∑

r f (r)Pr or
∫∞
−∞ f (x)P(x) dx

Some people use E (f ) rather than ⟨f ⟩. Be prepared to meet either.

Roger Barlow (TeraScale2025) Probability and Probability Distributions 24th February 2025 21 / 31



The Binomial Distribution

Binomial: Number of successes in N trials, each with probability p of
success

P(r ; p,N) =
N!

r !(N − r)!
prqN−r (q ≡ 1− p)

Binomial distributions
for
(1) N = 10, p = 0.6
(2) N = 10, p = 0.9
(3) N = 15, p = 0.1
(4) N = 25, p = 0.6

Mean µ = Np, Variance V = Npq, Standard Deviation σ =
√
Npq
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The Poisson Distribution

Number of events occurring at random rate λ

P(r ;λ) = e−λλ
r

r !

Limit of binomial as N → ∞, p → 0 with Np = λ = constant:

Nrpr

r !

(
1− λ

N

)N
Poisson distributions for
(1) λ = 5
(2) λ = 1.5
(3) λ = 12
(4) λ = 50
Mean µ = λ, Variance V = λ, Standard Deviation σ =

√
λ =

√
µ

Meet this a lot as it applies to event counts - on their own or in histogram
bins
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Pop Quiz

You need to know the efficiency of your PID system for positrons

Find 1000 data events where 2 tracks have a combined mass of 3.1 GeV
(J/ψ) and negative track is identified as an e−. (‘Tag-and-probe’
technique)
In 900 events the e+ is also identified. In 100 events it is not. Efficiency is
90%
What about the error?
Colleague A says

√
900 = 30 so efficiency is 90.0± 3.0%

Colleague B says
√
100 = 10 so efficiency is 90.0± 1.0%

Which is right?

Neither - both are wrong

This is binomial not Poisson: p = 0.9,N = 1000
Error is

√
Npq =

√
1000× 0.9× 0.1 (or

√
1000× 0.1× 0.9)

=
√
90 = 9.49 → Efficiency 90.0± 0.9 %
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The Gaussian

The Formula

P(x ;µ, σ) =
1

σ
√
2π

e−
(x−µ)2

2σ2

The Curve

Only 1 Gaussian curve, as µ and σ are just location and scale parameters

Properties

Mean is µ and standard deviation σ. Skew and kurtosis are 0.
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The Central Limit Theorem
Why the Gaussian is so important

If the variable X is the sum of N independent variables x1, x2 . . . xN then

1 Means add: < X >=< x1 > + < x2 > + · · · < xN >

2 Variances add: VX = V1 + V2 + . . .VN

3 If the variables xi are independent and identically distributed (i.i.d.)
then P(X ) tends to a Gaussian for large N

(1) is obvious
(2) is pretty obvious, and means that standard deviations add in
quadrature, and that the standard deviation of an average falls like 1√

N
(3) applies whatever the form of the original p(x)
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Demonstration

Take a uniform distribution from 0 to 1. It is flat. Add two such numbers
and the distribution is triangular, between 0 and 2.

With 3 numbers, it gets curved. With 10 numbers it looks pretty Gaussian

Roger Barlow (TeraScale2025) Probability and Probability Distributions 24th February 2025 27 / 31



Proof

Introduce the Characteristic Function < e ikx >=
∫
e ikxP(x) dx = P̃(k)

Expand the exponential as a series

< e ikx >=< 1+ikx+ (ikx)2

2! + (ikx)3

3! · · · >= 1+ik < x > +(ik)2<x2>
2! +(ik3)<x3>

3! . . .

Take logarithm and use expansion ln(1 + z) = z − z2

2 + z3

3 . . .
this gives power series in (ik), where coefficient κr

r ! of (ik)r is made up of
expectation values of x of total power r
κ1 =< x >, κ2 =< x2 > − < x >2, κ3 =< x3 > −3 < x2 >< x > +2 < x >3

. . . These are called the Semi-invariant cumulants of Thièle . Under a change of
scale α, κr → αrκr . Under a change in location only κ1 changes.
If X is the sum of i.i.d. random variables: x1 + x2 + x3... then P(X ) is the
convolution of P(x) with itself N times
The FT of convolution is the product of the individual FTs
The logarithm of a product is the sum of the logarithms
So P(X ) has cumulants Kr = Nκr
To make graphs commensurate, need to scale X axis by standard deviation, which
grows like

√
N. Cumulants of scaled graph K ′

r = N1−r/2κr
As N → ∞ these vanish for r > 2. Leaving a quadratic.
If the log is a quadratic, the exponential is a Gaussian. So P̃(X ) is Gausian.
The FT of a Gaussian is a Gaussian. QED.
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scale α, κr → αrκr . Under a change in location only κ1 changes.
If X is the sum of i.i.d. random variables: x1 + x2 + x3... then P(X ) is the
convolution of P(x) with itself N times
The FT of convolution is the product of the individual FTs

The logarithm of a product is the sum of the logarithms
So P(X ) has cumulants Kr = Nκr
To make graphs commensurate, need to scale X axis by standard deviation, which
grows like

√
N. Cumulants of scaled graph K ′

r = N1−r/2κr
As N → ∞ these vanish for r > 2. Leaving a quadratic.
If the log is a quadratic, the exponential is a Gaussian. So P̃(X ) is Gausian.
The FT of a Gaussian is a Gaussian. QED.

Roger Barlow (TeraScale2025) Probability and Probability Distributions 24th February 2025 28 / 31



Proof

Introduce the Characteristic Function < e ikx >=
∫
e ikxP(x) dx = P̃(k)

Expand the exponential as a series

< e ikx >=< 1+ikx+ (ikx)2

2! + (ikx)3

3! · · · >= 1+ik < x > +(ik)2<x2>
2! +(ik3)<x3>

3! . . .

Take logarithm and use expansion ln(1 + z) = z − z2

2 + z3

3 . . .
this gives power series in (ik), where coefficient κr

r ! of (ik)r is made up of
expectation values of x of total power r
κ1 =< x >, κ2 =< x2 > − < x >2, κ3 =< x3 > −3 < x2 >< x > +2 < x >3

. . . These are called the Semi-invariant cumulants of Thièle . Under a change of
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scale α, κr → αrκr . Under a change in location only κ1 changes.
If X is the sum of i.i.d. random variables: x1 + x2 + x3... then P(X ) is the
convolution of P(x) with itself N times
The FT of convolution is the product of the individual FTs
The logarithm of a product is the sum of the logarithms
So P(X ) has cumulants Kr = Nκr
To make graphs commensurate, need to scale X axis by standard deviation, which
grows like

√
N. Cumulants of scaled graph K ′

r = N1−r/2κr

As N → ∞ these vanish for r > 2. Leaving a quadratic.
If the log is a quadratic, the exponential is a Gaussian. So P̃(X ) is Gausian.
The FT of a Gaussian is a Gaussian. QED.

Roger Barlow (TeraScale2025) Probability and Probability Distributions 24th February 2025 28 / 31



Proof

Introduce the Characteristic Function < e ikx >=
∫
e ikxP(x) dx = P̃(k)

Expand the exponential as a series

< e ikx >=< 1+ikx+ (ikx)2

2! + (ikx)3

3! · · · >= 1+ik < x > +(ik)2<x2>
2! +(ik3)<x3>

3! . . .

Take logarithm and use expansion ln(1 + z) = z − z2

2 + z3

3 . . .
this gives power series in (ik), where coefficient κr

r ! of (ik)r is made up of
expectation values of x of total power r
κ1 =< x >, κ2 =< x2 > − < x >2, κ3 =< x3 > −3 < x2 >< x > +2 < x >3

. . . These are called the Semi-invariant cumulants of Thièle . Under a change of
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Gaussian or Normal?

Statisticians call it the ‘Normal’ distribution. Physicists don’t. But be
prepared.

Even if the distributions are not identical, the CLT tends to apply, unless
one (or two) dominates.

Most ‘errors’ fit this, being compounded of many different sources.
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From Gaussian to χ2

Useful for Goodness-of-fit

The sum of N unit Gaussians. χ2 =
∑

x2i

Distribution as N dimensional
Gaussian, integrated over
hypersphere
P(x1, x2...) ∝ e− 1

2(x
2
1 + x22 ...) =

e−χ2/2

Surface of hypershere gives factor
χN/2−1

Normalised:
p(χ2,N) = 1

2N/2Γ(N/2)
χN/2−1e−χ2/2

Mean N.
Rises to peak and falls again, for N > 2
Becomes Gaussian at very large N
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Conclusions

You will use the Gaussian constantly, and the Poisson very often.
There are other distributions, but you can look up their properties: pdf,
cdf, variance2, mean3 etc.

2Except for the Cauchy/Lorentz/Breit Wigner
3Except for the Landau
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