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Probability Distributions

Data values can be: integer (discrete) or real (continuous)
(They may also be ranked or categorical but let’s not go there)

Discrete values are described by probability distributions: Pr , pure
dimensionless numbers

Real values are described by probability density functions or pdfs: P(x)
P(x) has dimensions [x ]−1.

∫
P(x) dx or P(x)∆x are pure numbers

Parton Distribution Functions are also Probability Density Functions so no
problem in calling them pdf.

You will also (sometimes) meet the Cumulative Density Function (cdf).
C (x) =

∫ x
−∞ P(x ′) dx ′
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Expectation Values

Unitarity (something has got to happen)
Expressed by

∑
r Pr = 1 or

∫∞
−∞ P(x) dx = 1 as appropriate

The average result, the expectation value
Expressed by ⟨r⟩ =

∑
r rPr or ⟨x⟩ =

∫∞
−∞ xP(x) dx as appropriate

Often denoted by µ

Higher Moments: µn = ⟨rn⟩ or ⟨xn⟩
Central moments: µ′

n = ⟨(r − µ)n⟩ or ⟨(x − µ)n⟩
Variance V is just the second central moment..V =

〈
(x − µ)2

〉
Notice V =

〈
(x − µ)2

〉
=

〈
x2
〉
− 2µ ⟨x⟩+ µ2 =

〈
x2
〉
− ⟨x⟩2

V is often written as σ2. (Physicists prefer σ, statisticians prefer V )
Skew γ =

〈
(x − µ)3

〉
/σ3 Curtosis K =

〈
(x − µ)4

〉
/σ4 − 3

Generally for any f (x): ⟨f (x)⟩ =
∑

r f (r)Pr or
∫∞
−∞ f (x)P(x) dx

Some people use E (f ) rather than ⟨f ⟩. Be prepared to meet either.
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The Binomial Distribution

Binomial: Number of successes in N trials, each with probability p of
success

P(r ; p,N) =
N!

r !(N − r)!
prqN−r (q ≡ 1− p)

Binomial distributions
for
(1) N = 10, p = 0.6
(2) N = 10, p = 0.9
(3) N = 15, p = 0.1
(4) N = 25, p = 0.6

Mean µ = Np, Variance V = Npq, Standard Deviation σ =
√
Npq
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The Poisson Distribution

Number of events occurring at random rate λ

P(r ;λ) = e−λλ
r

r !

Limit of binomial as N → ∞, p → 0 with Np = λ = constant:

Nrpr

r !

(
1− λ

N

)N
Poisson distributions for
(1) λ = 5
(2) λ = 1.5
(3) λ = 12
(4) λ = 50
Mean µ = λ, Variance V = λ, Standard Deviation σ =

√
λ =

√
µ

Meet this a lot as it applies to event counts - on their own or in histogram
bins
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The Gaussian

The Formula

P(x ;µ, σ) =
1

σ
√
2π

e−
(x−µ)2

2σ2

The Curve

Only 1 Gaussian curve, as µ and σ are just location and scale parameters

Properties

Mean is µ and standard deviation σ. Skew and kurtosis are 0.
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The Central Limit Theorem
Why the Gaussian is so important

If the variable X is the sum of N independent variables x1, x2 . . . xN then

1 Means add: < X >=< x1 > + < x2 > + · · · < xN >

2 Variances add: VX = V1 + V2 + . . .VN

3 If the variables xi are independent and identically distributed (i.i.d.)
then P(X ) tends to a Gaussian for large N

(1) is obvious
(2) is pretty obvious, and means that standard deviations add in
quadrature, and that the standard deviation of an average falls like 1√

N
(3) applies whatever the form of the original p(x)
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Demonstration

Take a uniform distribution from 0 to 1. It is flat. Add two such numbers
and the distribution is triangular, between 0 and 2.

With 3 numbers, it gets curved. With 10 numbers it looks pretty Gaussian
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Proof

Introduce the Characteristic Function < e ikx >=
∫
e ikxP(x) dx = P̃(k)

Expand the exponential as a series

< e ikx >=< 1+ikx+ (ikx)2

2! + (ikx)3

3! · · · >= 1+ik < x > +(ik)2<x2>
2! +(ik3)<x3>

3! . . .

Take logarithm and use expansion ln(1 + z) = z − z2

2 + z3

3 . . .
this gives power series in (ik), where coefficient κr

r ! of (ik)r is made up of
expectation values of x of total power r
κ1 =< x >, κ2 =< x2 > − < x >2, κ3 =< x3 > −3 < x2 >< x > +2 < x >3

. . . These are called the Semi-invariant cumulants of Thièle . Under a change of
scale α, κr → αrκr . Under a change in location only κ1 changes.
If X is the sum of i.i.d. random variables: x1 + x2 + x3... then P(X ) is the
convolution of P(x) with itself N times
The FT of convolution is the product of the individual FTs
The logarithm of a product is the sum of the logarithms
So P(X ) has cumulants Kr = Nκr

To make graphs commensurate, need to scale X axis by standard deviation, which
grows like

√
N. Cumulants of scaled graph K ′

r = N1−r/2κr

As N → ∞ these vanish for r > 2. Leaving a quadratic.
If the log is a quadratic, the exponential is a Gaussian. So P̃(X ) is Gausian.
The FT of a Gaussian is a Gaussian. QED.
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Gaussian or Normal?

Even if the distributions are not identical, the CLT tends to apply, unless
one (or two) dominates.

Most ‘errors’ fit this, being compounded of many different sources.

Statisticians call it the ‘Normal’ distribution. Physicists don’t. But be
prepareZZd.
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Summary on Distributions

You will use the Gaussian constantly, and the Poisson very often.
There are other distributions, but you can look up their properties: pdf,
cdf, variance1, mean2 etc.

1Except for the Cauchy/Lorentz/Breit Wigner
2Except for the Landau
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Fitting
or

Estmation
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What’s happening

You have a dataset {x1, x2, . . . xN}
and a pdf P(x , a) with unknown parameter(s) a

You want to know:

1 What is the value for a according to the data?

2 What is the error on that value?

3 Does the resulting P(x , a) actually describe the data?

This is called ‘estimation’ by statisticians and ‘fitting’ by physicists

Also applies when finding a property rather than a parameter, and then
sometimes when one has a parent population rather than a pdf
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General considerations

An Estimator is a function of all the xi which returns some value for a
Write â(x1, x2, . . . xN)
There is no ‘correct’ estimator. You would like an estimator to be

Consistent: â(x) → a for N → ∞
Unbiassed: ⟨â⟩ = a

Efficient: V (â) =
〈
â2
〉
− ⟨â⟩2 is small

Invariant under reparameterisation: f̂ (a) = f (â)

Convenient

But no estimator is perfect, and these requirements are self-contradictory
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Bias: a simple example

Suppose you want to estimate the mean µ ≡ ⟨x⟩ for some pdf, and you
choose µ̂ = x = 1

N

∑
i xi

Then ⟨µ̂⟩ = 1
N

∑
i ⟨xi ⟩ =

1
N

∑
i ⟨x⟩ = ⟨x⟩. Zero bias.

Suppose you want to estimate the variance V ≡
〈
x2
〉
− ⟨x⟩2 for some pdf,

and you choose V̂ = x2 − x2 = 1
N

∑
i x

2
i −

(
1
N

∑
i xi

)2
V̂ = N−1

N2

∑
i x

2
i − 1

N2

∑
i

∑
j ̸=i xixj

Take expectation values.
〈
V̂
〉
= N−1

N

〈
x2
〉
− N(N−1)

N2 ⟨x⟩2 = N−1
N V

The ‘obvious’ V̂ underestimates the true V .

This is understandable: a fluctuation drags the mean with it, so
variations are less
This can be corrected for (Bessel’s correction) by an N/(N − 1).
Many statistical calculators offer σn and σn−1

This correction cures the bias for V . Actually σ is still biassed. But
V is more useful.
Biasses are typically small and correctable
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Efficiency is limited

The Minimum Variance Bound

If â is unbiassed

V (â) ≥
〈(

∂ ln L
∂a

)2〉−1
=

〈
−∂2 ln L

∂a2

〉−1

also named for Cramér, Rao, Fréchet, Darmois, Aitken and Silverstone
(equivalent form exists if there is a bias)

L(x1, x2...xn; a) = P(x1; a)× P(x2; a)...× P(xn; a)

Same as likelihood featuring in Bayes’ theorem, though emphasis here is
that L is Likelihood for all measurements of sample
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Fun algebra with the likelihood function

Writing.
∫
...
∫
dx1...dxn as just

∫
dx

Start with
Differentiate
Chain rule

Unitarity∫
L(x ; a) dx = 1∫
∂L
∂a dx = 0∫
L∂ ln L

∂a dx = 0∗

No bias: ⟨â⟩ = a∫
â(x)L(x ; a) dx = a∫
â(x)∂L∂a dx = 1∫
â(x)L∂ ln L

∂a dx = 1

Multiply column 1 by a and subtract from column 2:
∫
(â− a)∂ ln L

∂a L dx = 1

Invoke Schwarz’ lemma
∫
u2 dx ×

∫
v2 dx ≥

(∫
uv dx

)2
with u ≡ (â− a)

√
L, v ≡ ∂ ln L

∂a

√
L∫

(â− a)2L dx .×
∫ (

∂ ln L
∂a

)2
L dx ≥ 1

or
〈
(â− a)2

〉 〈(
∂ ln L
∂a

)2〉 ≥ 1

Vâ ≥ 1〈
( ∂ ln L

∂a )
2
〉

Finally, differentiate Eq. *:
〈(

∂ ln L
∂a

)2〉
+
〈
∂2 ln L
∂a2

〉
= 0 (Fisher information)
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Maximum likelihood estimation

If {xi} are independent then the likelihood L(x1, x2 . . . xN |a) =
∏

i P(xi |a)

The ML estimator

To estimate a using data {x1, x2 . . . xN}, find the value of a for which the
total log likelihood

∑
lnP(xi |a) is maximum.

3 types of problem

1 Differentiate, set to zero, solve the equation(s) algebraically
2 Differentiate, set to zero, solve the equation(s) numerically
3 Maximise numerically

Things to note

No deep justification for ML estimation, except that it works well

These are not ’the most likely values’ of a. They are the values of a
for which the values of x are most likely

The logs make the total a sum, easier to handle than a product

Remember a minus sign if you use a minimiser
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Maximum likelihood estimation

Consistent: Almost always

Unbiassed; It is biassed. But the bias usually falls like 1/N

Efficient: In the large N limit ML saturates the MVB, and you can’t
do better than that

Invariant under reparameterisation: clearly.

Convenient. Usually

It is used for

Basic unbinned raw-measurement data

Data with structure, such as binned histograms

but the same principles apply to both.
Start with the first
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Simple Examples(1): Gaussian mean and standard
deviation

{xi} have been gathered from a Gaussian. What are the ML estimates for
µ and σ?

ln L =
∑

−1
2((xi − µ)/σ)2 − N ln(

√
2πσ)

Differentiating wrt µ and σ and setting to zero gives 2 equations∑
i (xi − µ̂)/σ̂2 = 0

∑
(xi − µ̂)2/σ̂3 − N/σ̂ = 0

which are happily decoupled and give
µ̂ = 1

N

∑
i xi , σ̂2 = 1

N

∑
(xi − µ̂)2 (!)
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Simple Examples(2): Lifetime

Measuring a lifetime from a sample of decay times ti : P(t|τ) = 1
τ e

− t
τ

Log likelihood.
∑N

i=1−
ti
τ − N ln τ

Differentiate and set to zero
∑ ti

τ̂2
− N

τ̂ = 0 so τ̂ = 1
N

∑
ti

Exercise for the student

Working instead with the decay rate λ, so P(t|λ) = λe−λt , you can show
that λ̂ = N/

∑
ti = 1/τ̂ ..... Invariance under reparameterisation

Make it a bit more realistic (and complicated). Suppose that your
apparatus does not record decays with t > T .

P(t|τ) = 1
τ

e−t/τ

1−e−T/τ

ln L = −
∑ ti

τ − N ln τ − Nln(1− e−T/τ )

0 = ∂ ln L
∂τ |τ̂ =

∑ ti
τ̂2

− N
τ̂ + NTe−T/τ̂

τ̂2(1−e−T/τ̂ )

τ̂ = 1
N

∑
i ti +

T
eT/τ̂−1

Solve numerically - perhaps by repeated iteration
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Simple Examples(3). Signal plus background

Suppose xi have been gathered from P(x ; a) = aS(x) + (1− a)B(x)
ln L =

∑
i ln(aS(xi ) + (1− a)B(xi ))

Shows typical pdf for
Signal+Background

And typical data

And ln L with its maximum

Quicker and cleaner (if
possible) to differentiate and
set to zero∑ S(xi )−B(xi )

âS(xi )+(1−â)B(xi )
= 0

but still needs numerical
solution

Roger Barlow (LHC Physics, Islamabad) Distributions and Parameter Estimation 20th August 2025 22 / 31



Errors from ML

To first order, looking at the difference between the true a0 and the
estimated â
0 = ∂ ln L

∂a a=â =
∂ ln L
∂a a=a0 + (â− a0)

∂2 ln L
∂a2 a=a0

Deviations of â from a0 are due to deviations of ∂ ln L
∂a a=a0 from zero,

divided by the second derivative

V (â) = V (∂ ln L
∂a a=a0)/

(
∂2 ln L
∂a2 a=a0

)2
=

〈(
∂lnL
∂a

)2〉
a=a0/

(
∂2 ln L
∂a2 a=a0

)2

Which is all very well, but we don’t know what a0 is...

Approximate by using the actual value of our â : V (â) = −
(
∂2 ln L
∂a2

)−1

Noter that this is the MVB (in this approximation). ML is efficient
So the error is given by the second derivative of the log likelihood

How to find the second derivative (one way anyway)

ln L(a) = ln L(â) + 1
2(a− â)2 ∂

2 ln L
∂a2

.... (first derivative is zero)

= ln L(â)− 1
2

(
a−â
σa

)2

At a = â± σa, ln L = ln L(â)− 1
2 . ∆ ln L = −1

2 gives the error
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ML errors

Basic lnL errors
The interval [â− σa, â+ σa]
from the ∆ ln L = −1

2 points is
a 68% central confidence
interval

Asymmetric errors (messy!)
If a monotonically reparameterised as f (a),
the ML estimate is f̂ = f (â).
[f (â− σa), f (â+ σa)] = [f̂ − σ−

f , f̂ + σ+
f ] is

the 68% central confidence region.
If ln L(a) not symmetric, assume this is what
is happening and quote separate σ+, σ−.
For details see preprint to appear in N.I.M.
https://arxiv.org/abs/2411.15499
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ML errors
More than one parameter

For 2 (or more) unknown parameters
use same technique to map out 68%
(or whatever) confidence egions
Only difference is that ∆ ln L is
different.
Given by cumulative probability for
χ2 distribution with 2 (or whatever)
degrees of freedom
(χ2 details coming up)
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Fitting data points

Suppose your data is a set of xi , yi pairs with predictions yi = fi = f (xi ; a)
xi known precisely, yi measured with Gaussian errors σi

Usually one quantity can be precisely specified

The σi may all be the same. If so, the algebra is easier

The likelihood is the product of Gaussians 1
σi

√
2π
e−

1
2
((yi−f (xi ,a))/σi )

2

ln L = −1
2

∑
i (

yi−fi
σi

)2+boring constants

Introduce χ2 =
∑

i (
yi−f (xi ,a)

σi
)2

Maximum Likelihood → minimum χ2. (‘Method of Least Squares’)
If f is linear in a (e.g. f (x) = a1 + a2x + a3

√
x ) then this gives a set of

equations soluble in one step. If more complicated, need to iterate.
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Very simple example: the straight line fit

f (x) = a1 + a2x
Simple case: all σi the same

χ2 =
∑( yi−a1−a2xi

σ

)2
Differentiate and set to zero.
2 Equations∑

yi − a1 − a2xi = 0∑
xi (yi − a1 − a2xi ) = 0

Simple to unscramble by hand
First is a1 = y − a2x
Substitute in 2nd and get a2 =

xy−x y

x2−x2

In more general cases, write these as matrices

Linear Regression

Such straight line fits are linked to the statistical modelling technique of
’linear regression’ . The formulæ are the same.
But there are subtle differences
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Goodness of fit

Does the model f (x ; a) provide a good description of the yi?
Näıvely each term in χ2 sum ≈ 1
More precisely:
p(χ2,N) = 1

2N/2Γ(N/2)
χN/2−1e−χ2/2

Distribution as N dimensional
Gaussian, integrated over
hypersphere
Quantify by p-value: probability that,
if the model is true, χ2 would be this
large, or larger
Each fitted parameter reduces the effective number by 1. (A linear
constraint reduces the dimensionality of the hyperspace by 1).
Degrees of freedom ND = N − Nf
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Goodness of fit

Reasons for large χ2:

Bad theory

Bad data

Errors underestimated

Unsuspected negative correlation between data points (unlikely)

Bad luck

Reasons for small χ2:

Errors overestimated

Unsuspected positive correlation between data points (more likely)

Good luck

Although −1
2χ

2 is a log likelihood, −2 ln L is not a χ2. It tells you nothing
about goodness of fit.
(Wilks’ theorem says it does for differences in similar models. Useful for
comparisons but not absolute.)
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Using Toy Monte-Carlo for Likelihood and goodness of fit

Obvious suggestion: Take the fitted model, run many simulations, plot the
spread of fitted likelihoods and use to get p−value
This is wrong - J G Heinrich, CDF/MEMO/BOTTOM.CDFR/56303

Test case: model simple exponential P(t) = 1
τ e

−t/τ

Then whatever the original sample looks like you get
Log Likelihood =

∑
(−ti/τ − ln τ) = −N(t/τ + ln τ)

ML gives τ̂ = t = 1
N

∑
i ti

and this max log likelihood is ln L(τ̂ ; x) = −N(1 + ln t)
Any distribution with the same t has the same likelihood, after fitting.

What you can do: Histogram the p(xi ; â) values. This should be flat
(almost- the fitting will distort it).
If not enough data - cumulative plot should be straight line. Use max
deviation as test statistic. Apply K-S test or use toy Monte Carlo.

3Many thanks to Jonas Rademacker for pointing this out
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4 ways of fitting data

Full ML. Write down the likelihood and maximise
∑

j lnP(xj , a)
where j runs over all events. Slow for large data samples, and no
goodness of fit.

Binned ML. Put it in a histogram and maximise the log of the
Poisson probabilities

∑
i ni ln fi − fi where i runs over all bins

fi = NP(xi )w : don’t forget the bin width w . Quicker - but lose info
from any structure smaller than bin size

Put it in a histogram and minimise χ2 =
∑

i (ni − fi )
2/fi (Pearson’s

χ2). This assumes the Poisson distributions are approximated by
Gaussians so do not use if bin contents small . But you do get a
goodness of fit.

Put it in a histogram and minimise χ2 =
∑

i (ni − fi )
2/ni (Neyman’s

χ2). This makes the algebra and fitting a lot easier. But introduces
bias as downward fluctuations get more weight. And disaster if any
ni = 0

So there are many ways and they are not all equivalent: choose carefully!
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